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Abstract. Let B be a dg category, we define intermediate Jacobian for this dg category, gener-
alizing the construction of Alexander Perry for the admissible subcategory of Db(X) for smooth
projective variety X in [Per22, Definition 5.24]. As an application, we prove
(1) Certain nodal curve is determined by their bounded derived category.
(2) 1-nodal maximally non-factorial index one prime Fano threefolds of genus g ≥ 6 is determined

by its Kuznetsov component up to birational isomorphisms.
(3) A general genus 7 1-nodal maximally non-factorial prime Fano threefold is determined by its

Kuznetsov component up to isomorphisms.
Then we show that 1-nodal maximally non-factorial index one prime Fano threefolds of genus
g ≥ 6 coming from bridge construction is determined by a smooth and proper subcategory of the
Kuznetsov component together with a distinguished object. As an application, We describe the
fiber of (categorical) period map for one nodal maximally non-factorial prime Fano threefolds of
genus g ≥ 6 from bridge construction via Bridgeland stable objects in Kuznetsov components of
corresponding del Pezzo threefolds.
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1. Introduction

The bounded derived category of coherent sheaves Db(X) on a smooth Fano variety X contains
the same information as the variety itself (cf. [BO01]). In the past thirty years, characterizing an
algebraic variety and extracting its geometric properties such as rationality and birationality from
its derived category has gradually become one of the main subjects in modern birational geom-
etry. Among others, Kuznetsov launched the program of Homological projective duality (HPD)
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which offers a very important tool to study the bounded derived category of a projective variety
together with its linear section, providing many interesting semi-orthogonal decompositions and
equivalences between them. Probably the most influential conjecture in this area is a homological
criterion of the rationality of cubic fourfolds ([Kuz10]) in terms of derived category of K3 surface.
It has now been widely accepted that the Kuznetsov component–the non-trivial semi-orthogonal
component which is usually defined as the orthogonal complement of an exceptional collection–of
a smooth projective variety X encodes essential birational geometric information. A comprehen-
sive study on the Kuznetsov components of a series smooth projective varieties was made, see
[Kuz04b, Kuz16, Kuz09, KP18, BF11, BF13, BF14]. In particular, a notable conjecture was pro-
posed in [Kuz09] by relating the Kuznetsov components of two species birationally equivalent (or
conjectured to be birationally equivalent) prime Fano threefolds, which we recall below, Denote
by MF i

d the moduli space of smooth Fano threefold of index i and degree d.

Conjecture 1.1. [Kuz09, Conjecture 3.7] There is a correspondence Zd ⊂ MF2
d×MF i

4d+2, such

that for any pair (Yd, X4d+2) ∈ Zd, there is an equivalence of categories1

Ku(Yd) ≃ Ku(X4d+2).

There are many interesting geometric and Hodge theoretical consequences of Conjecture 1.1. One
of the geometric consequences is the identification of Fano surface of lines on degree d(3 ≤ d ≤ 5)
Del Pezzo threefold with Fano surface of conics on prime Fano threefold of degree 4d+ 2 [KPS18,
Proposition B.4.1,B.5.1,B.6.1]. More generally, the Bridgeland moduli spaces of semistable objects
with specific Mukai vectors in Kuznetsov components of these Fano threefolds are isomorphic
[LZ21, Theorem 1.1]. Besides the results on moduli spaces, the authors of [FLZ23] identify the group
of automorphisms of index one genus 8 prime Fano threefold with that of correspondent Phaffian
cubic threefold. Hodge theoretically, the author in [Per22] introduces intermediate Jacobian J(A)
of an admissible subcategory A of bounded derived category Db(X) of a smooth projective variety
X. He shows that the intermediate Jacobian J(Ku(X)) of the Kuznetsov component of a smooth
Fano threefold X recovers classical intermediate Jacobian J(X). In particular, the intermediate
Jacobian of prime Fano threefold of degree 4d+ 2 is isomorphic to that of Del Pezzo threefold of
degree d for d ≥ 3. As a result, the Kuznetsov component of these prime Fano threefolds serves as
their birational invariant.

However, it turns out that Conjecture 1.1 is false for d = 1 and d = 2 by [Zha20], [BP23]
and [LZ23] independently. To remedy this situation and correct the Conjecture 1.1, the authors
in [KS22] and [KS23] study slightly degenerations of smooth prime Fano threefolds of index one,
called 1-nodal maximally non-factorial Fano threefolds, which are constructed from smooth Del
Pezzo threefold of Picard rank one via bridge construction in [CKGS23]. They introduce the notion
of categorical absorption of singularities to relate the Kuznetsov component of nodal prime Fano
threefolds to that of smooth Del Pezzo threefold as follows.

Theorem 1.2. [KS23, Proposition 3.3] Let X be the 1-nodal Fano threefold constructed via the
bridge construction in [CKGS23] from a smooth Del Pezzo threefold Y . Then there is a semi-
orthogonal decomposition

Db(X) = ⟨PX , ÃX ,OX ,U∨
X⟩,

where the category PX is responsible for 1-nodal singularity, which is generated by a P∞,1-object(Definition 4.4),

and ÃX is a smooth and proper category, moreover ÃX ≃ Ku(Y ).

1The Kuznetsov’s Fano threefold conjecture stated slightly different for it required the correspondence Zd is
dominant on both factors. By [BT16], the dimension counting rules out the possibility of dominance on the second
factor, so it left open a question whether such an correspondence could exist.
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In this context, we still define the Kuznetsov component Ku(X) of these 1-nodal Fano threefold
X as the orthogonal complement of the exceptional pair ⟨OX ,U∨

X⟩. As in the smooth case, we have
the following natural question.

Question 1.3. How do we reconstruct intermediate Jacobians of these nodal varieties from their
derived categories?

To answer this question, we study Blanc’s topological K-theory for the category Ku(X) (cf.
[Bla16]) and associated Hodge structure. For this, we apply the method of noncommutative Hodge
theory [Per22],[JLLZ23] to category Ku(X), extending their results to arbitrary dg categories.
More precisely, for an arbitrary dg category B, we define intermediate Jacobian

J(B) = HP1(B)
j(HN−1(B)) + ImChKtop

1 (B)
,

where HP1(B),HN−1(B) are periodic cyclic homology and negative cyclic homology of B and j :
HN−1(B) → HP1(B) is the natural map. It is a priori an abelian group. We apply this construction
to the homological finite subcategory Ku(X)hf (see Definition 2.9) of the Kuznetsov component of
1-nodal maximally non-factorial Fano threefolds, recovering their intermediate Jacobians.

Theorem 1.4. Let X be a 1-nodal maximally non-factorial prime Fano threefold of index one or
index two. Then

J(Ku(X)hf) ∼= J(X).

In particular, if X is an index 1-nodal prime Fano threefold of degree 4d+ 2, then

J(Ku(X4d+2)hf) ∼= J(Yd).

We say that categorical Torelli theorem holds for a Fano variety X if the isomorphism class of
X is determined by its Kuznetsov component, while birational categorical Torelli theorem holds if
Ku(X) only determine its birational isomorphism class. Motivated by these statements, we apply
Theorem 1.4 to 1-nodal maximally non-factorial prime Fano threefold of genus g ≥ 6 and nodal
curves to prove that the Kuznetsov components determine their (birational) isomorphism classes.

Theorem 1.5.

(1) Let Ci = C ′
i

⋃
C ′′
i be a reducible Gorenstein curve with C ′

i
∼= P1 and C ′′

i a smooth curve of
genus g(C ′′

i ) > 1 and C ′
i

⋂
C ′′
i is a single point x. If Db(C1) ≃ Db(C2), then C1

∼= C2.
(2) Let X,X ′ be 1-nodal maximally non-factorial index one prime Fano threefolds of genus

g ≥ 6 such that Ku(X) ≃ Ku(X ′), then X ≃ X ′.
(3) Let X and X ′ be 1-nodal maximally non-factorial genus 7 Fano threefolds such that both of

them are constructed via the bridge construction from a genus 7 degree 8 curve C, which
is general in the tetragonal locus. Then Ku(X) ≃ Ku(X ′) =⇒ X ∼= X ′.

To prove Theorem 1.5 for nodal Fano threefolds, we first show the Fourier-Mukai type equiv-
alence Φ : Ku(X) ≃ Ku(X ′) would induce an isomorphism ϕ : J(X) ∼= J(X ′) as principally
polarized abelian varieties. Then using [KS23, Prop A.16], the isomorphism ϕ agrees with the
isomorphism ψ : J(Y ) ∼= J(Y ′) for corresponding smooth Del Pezzo threefold Y and Y ′. Finally,
the classical Torelli theorem for these Del Pezzo threefolds implies Y ∼= Y ′ and we obtain X ≃ X ′.
The proof for nodal curves is similar.

As an interesting application, we prove a birational reconstruction theorem of Bondal-Orlov
style for these nodal Fano threefolds.

Theorem 1.6. Let X,X ′ be 1-nodal maximally non-factorial index one prime Fano threefolds of
genus g ≥ 6 such that Db(X) ≃ Db(X ′), then X ≃ X ′.
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Then we consider the problem of determining the isomorphism class of a nodal prime Fano
threefold X from its birational isomorphism class through an additional distinguished object in
its Kuznetsov component, known as Refined categorical Torelli problem. In smooth cases, such an
object is produced from the tautological quotient bundle, and refined categorical Torelli theorems
are established in [JLZ22, Theorem 1.3]. For a maximally non-factorial nodal Fano threefold X,
let

Ỹ
π

��

σ

��
Y X

be the bridge construction for X. According to [KS23, Proposition 3.3], the semi-orthogonal de-

composition of Ỹ is given by

Db(Ỹ ) = ⟨O
Ỹ
(E −H),TO

L̃
(−1)(OỸ

(E −H)),RTO
L̃(−1)

(O
Ỹ
(E−H))(B̃Y ),OỸ

,U∨
Ỹ
⟩,

where TO
L̃
(−1)(OỸ

(E − H)) is the spherical twist of O
Ỹ
(E − H) via O

L̃
(−1). We still have the

semi-orthogonal decomposition

Db(X) = ⟨Ku(X),OX ,U∨
X⟩,

where UX = π∗UỸ
, the Mukai bundle. Denote by Q∨

X := LOX
U∨
X [−1], which is a vector bundle if

d = H3
Y ≥ 3. Denote by i : Ku(X) ↪→ ⟨Ku(X),Q∨

X⟩ the inclusion functor. Then it is natural to
ask the following question.

Question 1.7. Let X be a 1-nodal maximally non-factorial prime Fano threefold of genus g =
2d+ 2, d ≥ 2. Is the isomorphism class of X determined by Ku(X) and i!Q∨

X?

In the article, we discuss the question for degree 2d+2, d ≥ 2, we show the category of absorption

of singularities ÃX ⊂ Ku(X) together with the distinguished object RPX i
!Q∨

X ∈ ÃX recover the
exact data to reconstruct X. More precisely, we prove the following theorem.

Theorem 1.8. Let X be a 1-nodal maximally non-factorial prime Fano threefold of genus g ≥ 6,

obtained from the bridge construction. Then the isomorphic class of X is determined by ÃX ⊂
Ku(X) and RPX

i!Q∨
X , where Ku(X) = ⟨P, ÃX⟩. More precisely,

(1) If g = 6, then the distinguished object σ∗◦RO
Ỹ
(E−H)◦LT◦π∗(i!Q∨

X) ∼= (σ∗◦LT)π
∗(RPX

i!Q∨
X)

is isomorphic to the ideal sheaf IL of a line L we start with.
(2) If g ≥ 8, then the distinguished object σ∗ ◦RO

Ỹ
(E−H) ◦LT ◦ π∗(i!Q∨

X) ∈ Ku(Y ) is isomor-

phic to the (acyclic extension) of non-locally free instanton sheaf associated to the smooth
rational curve C of degree d− 1 we start with.

In other words, refined categorical Torelli theorem is proved.

Theorem 1.9. Let X,X ′ be 1-nodal Fano threefolds above and Φ : ÃX ≃ ÃX′ be the equivalence
such that Φ(RP i

!Q∨
X) ∼= RP ′i!Q∨

X′, then X ∼= X ′.

1.1. Fiber of categorical period map. The idea of the categorical period map is introduced
in [JLLZ21a, Remark 10.2] but was only rigorously defined in a recent paper [KS23, Section 1.7].
Denote by S ⊂ MFMXg the substack of the moduli stack of Fano-Mukai pairs defined in [KS23,
Definition 1.3]. Let

P
Ã
: S → MTrCat,

be the categorical period map, which sends the pair (X,UX) of index one prime Fano threefold
X of genus g and the Mukai bundle UX to a smooth and proper semi-orthogonal component
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ÃX(cf. Section 8). A natural question is to describe the fiber of the categorical period map PÃ. A
beautiful application of the refined categorical Torelli theorem is identifying this fiber as a sub locus
of the Bridgeland moduli space of semistable objects in the Kuznetsov component of some Fano
threefold–a successful attempt is made in [JLZ22, Theorem 1.4] to compute the fiber of categorical
period map for smooth Fano threefolds. We apply a similar idea, using Theorem 1.9 to compute
the fiber of P

Ã
for nodal Fano threefolds.

Theorem 1.10.

(1) The fiber of categorical period map

PÃ : MFMX6,Y2 → MTrCat

• over ÃX of a smooth a smooth Gushel-Mukai threefold X(which is nothing but Kuznetsov

component Ku(X)) is the disjoint union of two surfaces: Ỹ ≥2
A⊥

⋃
Ỹ ≥2
A .

• over ÃX , where X is a 1-nodal maximally non-factorial Gushel-Mukai threefold via
bridge construction from a quartic double solid Y is Hilbert scheme F (Y ) of lines on
Y

(2) The fiber of categorical period map

PÃ : MFMX8,Y3 → MTrCat

over ÃX where X is either a smooth index one prime Fano threefold of genus 8 or a 1-nodal
maximally non-factorial one via bridge construction from a cubic threefold Y is isomorphic
to the complement of the strictly semistable objects in moduli space Mσ(Ku(Y ), 2[Il]) of
semistable objects, which consists of rank two instanton bundles and rank two stable but
non locally free instanton sheaves.

(3) For d ≥ 4, the fiber of categorical period map

PÃ : MFMX2d+2,Yd

(1) → MTrCat

over ÃX with X to be a 1-nodal maximally non-factorial genus 2d + 2 Fano as above is
the locus of acyclic extension of a rank two charge d − 1 non locally free stable instanton
sheaves F0 of the form

0 → F0 → O⊕2
Y → OC((d− 2)p) → 0.

Inspired by Theorem above we make the following conjecture.

Conjecture 1.11. Let

PÃ : MFMX2d+2

≤1mnf → MTrCat,

with d ≥ 3 be the categorical period map on moduli stack consisting of smooth component MFMXg

and 1-nodal maximally non-factorial component of Fano-Mukai pairs.

Then for any point ÃX in its image, the fiber

P−1

Ã
(ÃX) ∼= Mσ(Ku(Yd), (d− 1)[Il]).

1.2. Related Work. In [JLLZ21b] and [JLLZ21a], the authors prove the Kuznetsov component
Ku(X) of smooth Gushel-Mukai threefold X determine its birational isomorphism class. Moreover,
the fiber of (categorical) period map for (Kuznetsov component) intermediate Jacobian of index
one prime Fano threefold of genus g ≥ 6 is computed in [JLLZ21b, Theorem 1.4]. (Birational)
categorical Torelli theorems have been studied for many varieties. Interested reader could refer to
[PS22] for more details.
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1.3. Organization of the article. In Section 2 we recall terminology and basic property of
semi-orthogonal decomposition(SOD) of bounded derived category of coherent sheaves. Then we
introduce subcategory of homological finite objects and recall its compatibility with respect to
SOD. In Section 3, we introduce several additive invariants for DG categories. In particular, we
prove several propositions of topological K-theories for admissible subcategories A ⊂ Db(X) with
a singular projective variety X. In Section 4, we introduce a family of nodal Fano threefolds and
describe their SOD following [KS22]. We prove birational Torelli theorems for one-nodal maxi-
mally non-factorial prime Fano threefolds. In Section 5, we generalize intermediate Jacobian for
admissible subcategory of a bounded derived category Db(X) for smooth projective variety X in
[Per22] to smooth and proper DG category and even to arbitrary DG category. Then we prove
Theorem 1.4. In Section 6, we prove Theorem 1.5. In Section 7, we prove Theorem 1.8. Then we
prove Proposition 7.9 on the existence of a family of gluing objects in a family of smooth and
proper categories. Then we prove Theorem 1.9. In Section 8, we prove Theorem 1.10.

1.4. Acknowledgement. We would like to thank Arend Bayer, Sasha Kuznetsov, Yuchen Liu, Fei
Xie and Linsheng Wang for useful conversation on related topics. SZ is is supported by ANR project
FanoHK, grant ANR-20-CE40-0023 and Deutsche Forschungsgemeinschaft under Germany’s Ex-
cellence Strategy-EXC-2047/1-390685813, and partially supported by GSSCU2021092. This paper
is also supported by the NSF under grant No. DMS-1928930, while SZ was a resident at the Simons
Laufer Mathematical Sciences Institute in Berkeley, California. Part of the work was finished when
XL and SZ visited the Max-Planck Institute for Mathematics, Hausdorff Research Institute for
Mathematics, SCMS Fudan University and MCM, Chinese Academy of Science. We are grateful
for the excellent working conditions, hospitality, and financial support.

2. Semi-orthogonal decomposition and Homological finite objects

We review some useful facts and results about semi-orthogonal decompositions, the subcate-
gory of homological finite objects. Then we review the definition of Hochschild (co)homology and
(periodical) cyclic homology. Background on triangulated categories and derived categories of co-
herent sheaves can be found in [Huy06]. Let X be a projective variety. From now on, for any
E,F ∈ Db(X), define

RHom•(E,F ) =
⊕
i∈Z

Exti(E,F )[−i].

2.1. Exceptional collections and semi-orthogonal decompositions.

Definition 2.1. Let D be a k-linear triangulated category and E ∈ D. We say that E is an
exceptional object if RHom•(E,E) = k. Now let (E1, . . . , Em) be a collection of exceptional objects
in D. We say it is an exceptional collection if RHom•(Ei, Ej) = 0 for i > j.

Definition 2.2. Let T be a triangulated category and D a full triangulated subcategory. We define
the right orthogonal complement of D in T as the full triangulated subcategory

D⊥ = {E ∈ T | HomT (F,E) = 0 for all F ∈ D}.

The left orthogonal complement is defined similarly, as

⊥D = {E ∈ T | HomT (E,F ) = 0 for all F ∈ D}.

Definition 2.3. Let T be a triangulated category. We say a full triangulated subcategory D ⊂ T
is admissible, if the inclusion functor i : D ↪→ T has left adjoint i∗ and right adjoint i!.
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Definition 2.4. Let T be a triangulated category, and (D1, . . . ,Dm) be a collection of full admis-
sible subcategories of T . We say that T = ⟨D1, . . . ,Dm⟩ is a semiorthogonal decomposition of T if
Dj ⊂ D⊥

i for all i > j, and the subcategories (D1, . . . ,Dm) generate T , i.e. the category resulting
from taking allcones of objects in the categories (D1, . . . ,Dm) is equivalent to T .

Let T admits the Serre functor ST . Then we have:

Proposition 2.5. If T = ⟨D1,D2⟩ is a semi-orthogonal decomposition, then T ≃ ⟨ST (D2),D1⟩ ≃
⟨D2, S

−1
T (D1)⟩ are also semi-orthogonal decompositions.

Let i : D ↪→ T be an admissible triangulated subcategory. Then the left mutation functor LD
through D is defined as the functor lying in the canonical functorial exact triangle

ii! → id → LD

and the right mutation functor RD through D is defined similarly, by the triangle

RD → id → ii∗.

Therefore, LD is exactly the left adjoint functor of D⊥ ↪→ T . Similarly, RD is the right adjoint
functor of ⊥D ↪→ T .

When E ∈ Db(X) is an exceptional object, and F ∈ Db(X) is any object, the left mutation LEF
fits into the triangle

E ⊗ RHomX(E,F ) → F → LEF,

and the right mutation REF fits into the triangle

REF → F → E ⊗ RHomX(F,E)∨.

A calculation of adjoint functors gives the following.

Lemma 2.6. Let T = ⟨D1,D2⟩ be a semi-orthogonal decomposition. Then

SD2 = RD1 ◦ ST and S−1
D1

= LD2 ◦ S−1
T .

2.2. Mutation. Let π : Y −→ X be a morphism with Rπ∗OY = OX . Assume Y is smooth, and
there is a semi-orthogonal decomposition

Db(Y ) = ⟨A1,A2, · · · ,Am⟩,

which induces a strong semi-orthogonal decomposition,

Db(X) = ⟨Rπ∗A1,Rπ∗A2, · · · ,Rπ∗Am⟩.

We prove the following,

Theorem 2.7. Let E ∈ Perf(X) that lies in some semi-orthogonal component and MY and MX

be the same type of mutations for the semi-orthogonal decompositions of Db(Y ) and Db(X) respec-
tively. We have

Rπ∗MY (Lπ∗E) =MX(E).

Proof. It suffices to prove the same statement for projection functor of semi-orthogonal decom-
position since the mutation functor applying to E is certain projection functor with respect to a
semi-orthogonal decomposition. Without loss of generality, we assume m = 2. Namely, it suffices
to prove the following lemma.
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Lemma 2.8. Assume a semi-orthogonal decomposition

Db(Y ) = ⟨A1,A2⟩
which induces a strong semi-orthogonal decomposition,

Db(X) = ⟨Rπ∗A1,Rπ∗A2⟩.
Let E ∈ Perf(X). Let PY,i and PX,i be the projection functor to the semi-orthogonal components,
i = 1, 2. We have

Rπ∗PY,i(Lπ∗E) = PX,i(E).

We prove the lemma for i = 1. Let

P2 → ∆Y → P1

be the triangle with respect to the semi-orthogonal decomposition of Db(Y ). Clearly Lπ∗E ∈
Db(Y ). Then PY,1(Lπ∗E) = ΦP1(Lπ∗E). By projection formula, we have

Rπ∗(ΦP1(Lπ∗E)) = ΦR(π,π)∗P1
(E).

Since the triangle
R(π, π)∗P2 → R(π, π)∗∆Y = ∆X → R(π, π)∗P1

is the triangle for the semi-orthogonal decomposition of Perf(X), we have PX,1(E) = ΦR(π,π)∗P1
(E).

Thus we have the statement of the lemma

Rπ∗PY,i(Lπ∗E) = PX,i(E).

□

2.3. Homologically finite subcategory. For this subsection, we refer to [Orl].

Definition 2.9. We say that an object E in triangulated category T is homological finite if for
any other object F ∈ T all Hom(E,F [i]) are trivial except for finite number of i ∈ Z. All such
objects form a full subcategory of T , denoted by Thf .

Proposition 2.10. [Orl, Proposition 1.11] Let X be a quasi-projective variety. Then Db(X)hf =
Perf(X).

The next proposition shows that the subcategory of homologically finite objects is compatible
with semi-orthogonal decomposition.

Proposition 2.11. [Orl, Proposition 1.10] Let T =
〈
N1,N2, · · · Nj

〉
be a strong semi-orthogonal

decomposition, namely the embedding of Ni ↪→ T is admissible. Then there is a semi-orthogonal
decomposition,

Thf =
〈
N1hf ,N2hf , · · · Njhf

〉
.

2.4. Del Pezzo threefolds of Picard rank one and Kuznetsov components. In this section,
we briefly review Kuznetsov components of del Pezzo threefold of Picard rank one. By [Isk80] every
del Pezzo threefold Y := Yd of rank one and degree d belongs to the following five families, indexed
by their degree d = H3 = {1, 2, 3, 4, 5}:

(1) Y5 = P6 ∩Gr(2, 5) is a codimension 3 linear section of Grassmannian Gr(2, 5).
(2) Y4 = Q ∩Q′ is intersection of two quadric hypersurfaces in P5.
(3) Y3 ⊂ P4 is cubic threefold.
(4) Y2 is a quartic double solid, i.e. a double cover of P3 with smooth branch divisor R ∈

|OP3(4)|.
(5) Y1 is a degree 6 hypersurface of weighted projective space P(1, 1, 1, 2, 3).
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Every del Pezzo threefold Y above admits the semi-orthogonal decomposition

Db(Y ) = ⟨Ku(Y ),OY ,OY (1)⟩,
where the Kuznetsov component Ku(Y ) is defined to be the semi-orthogonal component which
is the right orthogonal complement of an exceptional collection OY ,OY (1). We can identify the
numerical Grothendieck group N (Ku(Y )) of Ku(Y ) with the image of Chern character map

ch: N (Ku(Y )) → H∗(X,Q).

It is a rank 2 lattice spanned by the classes

v =

(
1, 0, −1

d
H2, 0

)
and w =

(
0, H, −1

2
H2,

(
1

6
− 1

d

)
H3

)
.

With respect to this basis, the Euler form on N (Ku(Y )) is represented by the matrix

(1)

(
−1 −1
1− d −d

)
.

3. Additive invariants for DG categories

3.1. Hochschild homology, negative cyclic homology and periodical cyclic homology of
DG categories. In this subsection, we give a brief introduction to Hochschild homology, cyclic
homology, and the Hodge theory of smooth proper dg categories. The reference is [Kel07].

Definition 3.1. A Z-graded DG category is a category whose morphism space Hom(E,F ) are
complexes of k module, and the composition

Hom(E1, E2)⊗Hom(E2, E3) → Hom(E1, E3).

is morphism of chain complexes. The unit morphism is of closed degree 0.

Example 3.2. A basic example is the category Cdg(k) whose objects are complexes of k module
and the morphism spaces are the internal Hom complexes.

A derived categoryD(A) is the localization of the category of rightA over the quasi-isomorphisms.
A dg functor ϕ : A1 → A2 is a Morita-equivalence if the induced funtor on derived category
ϕ∗ : D(A1) → D(A2) is an exact equivalence. Let dg-cat be the category of dg categories whose
morphism spaces are dg functors. There is a model structure with weak equivalence to be the
Morita equivalences. We write Hmo(dg − cat) the homotopical category with respect to the Morita
equivalences.

Definition 3.3. An additive invariant of dg categories is an additive functor of additive categories
A : dg − cat → C such that

• the functor A factors through Hmo(dg-cat), namely, A maps Morita equivalence to isomor-
phism.

• the functor A is additive with respect to semi-orthogonal decomposition.

The natural additive invariant of the DG category is Hochschild homology and cyclic homology.

Example 3.4. Let C(A) = A ⊗L
Aop⊗A A. Using bar resolution of bi-module A, complex C(A)

is a mixed complex, namely, it is a Z-graded vector space with differential b and the Connes B
operator such that bB + Bb = 0. The derived category of the mixed complexes is equivalent to

the derived category of dg algebra D(Λ), where Λ = k[ϵ]
ϵ2

, degree of ϵ is -1 and d(ϵ) = 0. We have
mixed complexes as additive invariant

Mix : Hmo(dg − cat) → D(Λ)
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• (Hochschild homology) HH∗(A) = H∗(C(A), b).
• (Periodic cyclic homology) HP∗(A) = H∗(C(A)((u)), b + uB). Here u is a formal variable
of degree 2.

• (Negative cyclic homology) HN∗(A) = RHomΛ(k,C(A)).

The negative cyclic homology and periodic cyclic homology are additive invariants.

A dg category is smooth and proper if it is proper andA is perfect overAop⊗A. The examples are
natural dg enhancement of admissible subcategory of derived category of smooth proper varieties.
There are similar Hodge filtration of HP∗(A) (which is de Rham cohomology when A is a derived
category of smooth proper variety)

⊂ · · ·HN−2j−1(A) ⊂ · · · ⊂ HN−1(A) ⊂ HN1(A) ⊂ HN3(A) · · · ⊂ HN2j+1(A) ⊂ · · · ⊂ HP1(A).

⊂ · · ·HN−2j(A) ⊂ · · · ⊂ HN−2(A) ⊂ HN0(A) ⊂ HN2(A) · · · ⊂ HN2j(A) ⊂ · · · ⊂ HP0(A).

Thanks to [Kal08] and [Kal17], the noncommutative Hodge to de Rham spectral sequence degen-
erates. Therefore we have exact sequences,

0 → HN2j−1(A) → HN2j+1(A) → HH2j+1(A) → 0.

0 → HN2j(A) → HN2j+2(A) → HH2j+2(A) → 0.

If A is an admissible subcategory of derived category of smooth projective variety, then the
exact sequences have natural splitting induced from Hodge decomposition.

3.2. Topological K-theory of admissible subcategories.

Definition 3.5. [Bla16] The topological K-theory for dg categories over C is an additive invariant,

Ktop
1 : Hmo(dg − cat) → Z−mod.

with Chern character map

chtop : Ktop
1 (A) → HP1(A).

Furthermore Ktop
1 (Dperf

dg (X)) ⊗ C ∼= Hodd(X,C), and the Chern character is the usual Chern

character.

Let X be a singular projective variety and A ⊂ Db(X) be the admissible subcategory and
we have the semi-orthogonal decomposition Db(X) = ⟨A,⊥A⟩. Let Ahf ⊂ A the subcategory of
homological finite objects of A, then by Proposition 2.11, we have the semi-orthogonal decomposi-
tion Dperf (X) = ⟨Ahf ,

⊥Ahf⟩. We aim at extracting Hodge theory from these Ahf , with examples

considered in this article. Since Ahf is proper we have natural Euler paring for Ktop
1 (Ahf) [Per22,

Lemma 5.2].

Lemma 3.6. Let A ⊂ Db(X) be an admissible subcategory with X a projective variety. If HP1(Ahf) =

0, then Ktop
1 (Ahf) is a torsion abelian group.

Proof. Since we have injective map Ktop
1 (Dperf

dg (X))⊗C ↪→Chtop
HP1(D

perf
dg (X)) [Bla16, Proposition

4.32], by additivity of Ktop
1 and HP1 with respect to semi-orthogonal decomposition, we have

injective map

Ktop
1 (Ahf)⊗ C ↪→ HP1(Ahf) = 0.

Therefore Ktop
1 (A)⊗ C = 0, and then Ktop

1 (Ahf) is a torsion abelian group. □

Lemma 3.7. Let A ⊂ Db(X) be an admissible subcategory, where X is a projective variety. Let
A = ⟨A1,B⟩ be an admissible semi-orthogonal decomposition, and HP1(Bhf) = 0, then we have an

isometry Ktop
1 (Ahf)tf ∼= Ktop

1 (A1,hf)tf with respect to Euler pairing.
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Proof. We have an isomorphism

Ktop
1 (Ahf) ∼= Ktop

1 (A1,hf)⊕Ktop
1 (Bhf).

First, if v′ is torsion in Ktop
1 (Ahf), then there exist integerm,mv′ = 0, andmX (v, v′) = X (v,mv′) =

0, hence X (v, v′) = 0. That is to say, the torsion elements have no contribution to the Euler pairing.

Thus, we have an isometry Ktop
1 (Ahf)tf ∼= Ktop

1 (A1,hf)tf by Lemma 3.6. □

4. One nodal maximally non-factorial Fano threefold and derived category

In this section we review definition of one nodal maximally non-factorial Fano threefolds and its
property following [CKGS23]. Then we briefly review the work [KS22] and [KS23] on derived cate-
gory and semi-orthogonal decomposition of such nodal Fano threefolds. Then we prove (birational)
Torelli theorem for these Fano threefolds.

Let X be a Fano threefold that has at worst isolated ordinary double points(nodes). Let π :

X̃ → X be the blow up at singular locus with exceptional divisors E1, . . . , Er. For each i, we have
Ei

∼= P1 × P1 and OEi(Ei) = OP1×P1(−1,−1). Thus Pic(Ei)/[OEi(Ei)] ∼= Z.

Definition 4.1. A nodal threefold X is called maximally non-factorial if the morphism

Pic(X̃) →
r⊕

i=1

Pic(Ei) →
r⊕

i=1

(Pic(Ei)/[OEi(Ei)]) ∼= Zr

is surjective.

The next proposition leads to the definition of intermediate Jacobian of a one nodal maximally
non-factorial Fano threefold.

Proposition 4.2. [KS23, Proposition A.16] Let f : X → B be a smoothing of a one nodal
maximally non-factorial Fano threefold X. Then there is a smooth and proper family J → B of
principally polarized abelian varieties such that

Jb
∼=

{
Jac(Xb), b ̸= o

Jac(X̂), b = o.

where X̂ is a small resolution of X and these isomorphisms are compatible with principal polar-
izations.

Definition 4.3. Let X be an one nodal maximally non-factorial prime Fano threefold. Its inter-
mediate Jacobian J(X) := Jo, where J is the smooth and proper family of intermediate Jacobian
obtained in Proposition 4.2.

Definition 4.4. An object P ∈ Db(X) is P∞,q-object if Ext•(P, P ) ∼= k[t], where deg(t) = q.

In [KP23] and [KS22] the authors introduce the notion of Categorical absorption of singularties.
Briefly to say, for a nodal complex algebraic variety X, they managed to establish the semi-
orthogonal decomposition of the bounded derived category Db(X) as

Db(X) = ⟨P1, . . . ,Pr,A⟩,
where Pi is generated by P∞ objects for each i, which are responsible for nodal singularities and
their orthogonal complementA is a smooth and proper category. In the case of one nodal maximally
non-factorial Fano threefold of Picard rank one, they prove the following theorem.

Theorem 4.5. [Xie23][KS23][KP23] Let X be a one nodal maximally non-factorial prime Fano
threefold, then
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(1) If X is a nodal quintic del Pezzo threefold, then

Db(X) = ⟨Db(Rm−1), D
b(R1),OX ,OX(1)⟩,

where 1 ≤ m ≤ 3 is the number of nodes of X and Rm is a quiver algebra defined in [Xie23,
(1.2)]. Moreover, Db(Rn) admits a further semi-orthogonal decomposition with a copy of

Db(k) and n-copies of Db(A) with A = K[x]
(x2)

is a DG-algebra with deg(x) = −1.

(2) If X is an one nodal maximally non-factorial prime Fano threefold of genus g ≥ 6 and
g ̸= 9, 10, then

Db(X) = ⟨Ku(X),OX ,U∨
X⟩,

such that

Ku(X) =


⟨Ku(Y2),P⟩, g = 6;

⟨Db(C7),P⟩, g = 7;

⟨Ku(Y3),P⟩, g = 8;

⟨B,P⟩, g = 12,

where C7 is a smooth curve of genus g = 7 respectively, and B = ⟨E1, . . . , E4⟩ is a category
generated by an exceptional collection of vector bundles. Moreover U∨

X is the Mukai bundle

for each genus and the category P is derived equivalent to Db(A).

Next we prove (birational) Torelli theorem for nodal Fano threefolds as above.

Theorem 4.6. Let X and X ′ be 1-nodal maximally non-factorial index one prime Fano threefold
of genus g ≥ 6 such that J(X) ∼= J(X ′) as principal polarised abelian varieties, then X ≃ X ′.

Proof. The classification of one nodal maximally non-factorial index one prime Fano threefolds are
given in [CKGS23]. By [CKGS23, Remark], those 1-nodal Fano threefolds of genus g = 7, 9, 10, 12
are all rational, therefore the statement is trivial. We start with g = 6, by [CKGS23], it is given
by the bridge construction

Ỹ
π

��

σ

��
Y X

with quartic double solid Y and Ỹ the blow up of Y along a line. Note that π is a small

contraction along a line. Then by [KS23, Proposition A.16], J(X) ∼= J(Ỹ ) ∼= J(Y ) and J(X ′) ∼=
J(Y ′), thus J(Y ) ∼= J(Y ′) as polarised abelian varieties, then by [Deb12, Section 3.5], Y ∼= Y ′,
thus X ≃ X ′ since σ and π are birational maps.

Next, we consider the g = 8 case. By [CKGS23], there are two types of g = 8 prime Fano
threefolds, both of which are given by bridge construction

Ỹ
π1

��

σ1

��
Y X

Ỹ
π2

��

σ2

��
P2 X
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where σ1 is blow up of a cubic threefold Y along a conic and σ2 is a conic bundle with quintic

discriminant curve. For the first case, similar to the Gushel-Mukai case J(X) ∼= J(Ỹ ) ∼= J(Y ). For
the second case, by the commutative diagram in [CKGS23, Construction] and chain of equalities

on h2,1, we have J(Ỹ ′) ∼= J(Y ′). Thus, if J(X) ∼= J(X ′) as principal polarised abelian varieties,
then J(Y ) ∼= J(Y ′) as principal polarised abelian varieties, where Y, Y ′ are cubic threefolds, then
Y ∼= Y ′ by Torelli theorem for cubic threefolds(cf. [Deb12, Section 3.4]). For the first case, X ≃ Y .
For the second case, X ′ is also birational to Y ′(from the same commutative diagram above).
Therefore X ≃ X ′. □

In the case of smooth prime Fano threefold of index one and genus 7, the actual Torelli theorem
holds. One might wonder if the statement extends to the nodal case. We provide a partial answer
to this question. Recall any genus 7 1-nodal maximally non-factorial prime Fano threefold is
constructed via the bridge construction from P3:

P̃3

π

��

σ

��
P3 X

where σ is blow up a genus 7 and degree 8 curve in P3 and π is a small contraction induced by
anticanonical linear system |−KP̃3 |. Recall the locus of non-hyperelliptic curves which have a map

of degree four to P1 is called tetragonal loci. If C is general, then by [Ma13], there is a unique g14
on C.

Proposition 4.7. Let X and X ′ be 1-nodal maximally non-factorial prime Fano threefold of
genus 7, assume the genus 7 and degree 8 curve C ⊂ P3 is general in tetragonal loci. Then J(X) ∼=
J(X ′) =⇒ X ∼= X ′.

Proof. Now J(X) ∼= J(X ′) implies J(C) ∼= J(C ′), which implies C ∼= C ′. Now we show that if
C,C ′ ∈ T7(tetragonal loci) are general, then the isomorphism of C and C ′ is induced from that on
P3. Indeed, since C ⊂ P3, there is a line bundle L1 of degree 8 and h0(L1) = 4. Let L′

1 := ωC⊗L−1
1 ,

then degree of L′
1 is 12 − 8 = 4 and h0(L′

1) = h1(L1) By Serre duality. Then by Riemann-Roch
theorem we have h0(L1) − h1(L1) = deg(L1) + 1 − g = 2, then h0(L′

1) = 2, thus L′
1 is a g14. But

C ∈ Tg is general, then g14 is unique by [Ma13, Section 3], therefore L1 is unique. This means
that C determines L1. Thus if C ′ ∼= C, then L2

∼= L1 and both line bundles are the ones which
determine their embedding to P3, then the isomorphism of C and C ′ can be lifted to the one in
PGL4, thus X ∼= X ′. □

5. Intermediate Jacobian of DG category: Hodge theory of Kuznetsov
components

5.1. Intermediate Jacobian of DG categories. In this section, we generalize the construction
of intermediate Jacobian for admissible subcategory of bounded derived category of a smooth
projective variety in [Per22, Definition 5.24] to arbitrary DG category and prove Theorem 1.4.

Let A ⊂ Db(Z) be an admissible subcategory, where Z is smooth projective. First we review
the construction of J(A) in [Per22, Definition 5.24]. There is a Hodge filtration

· · · ⊂ HN−3(A) ⊂ HN−1(A) ⊂ HN1(A) ⊂ · · · ⊂ HP1(A).
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The natural splitting from that of Z gives a weight one Hodge structure for topological K-group
Ktop

1 (A)tf . Namely, the topological Chern character induces,

Ktop
1 (A)tf ⊗ C ∼=chtop HP1(A) ∼= HN−1(A)⊕HN−1(A).

Thus, we have a complex torus associated to this weight one Hodge structure. More explicitly,

J(A) =
HP1(A)

HN−1(A) + ImchKtop
1 (A)

.

Let X be a smooth Fano threefold such that the bounded derived category Db(X) admits a
semi-orthogonal decomposition

Db(X) = ⟨Ku(X), E1, . . . , En⟩,

where ⟨E1, E2, · · · , En⟩ is an exceptional collection, then by [JLLZ23, Lemma 3.9], the intermediate
Jacobian J(Ku(X)) ∼= J(X).

Next we generalize the definition of intermediate Jacobian for admissible subcategory A to
arbitrary dg category.

Definition 5.1. Let B be a dg category. We have a natural map j : HN−1(B) → HP1(B). Define
intermediate Jacobian

J(B) = HP1(B)
j(HN−1(B)) + ImChKtop

1 (B)
.

In this case, intermediate Jacobian J(B) is only an abelian group. Next lemma shows that the
abstract intermediate Jacobian construction is additive with respect to semi-orthogonal decompo-
sition.

Lemma 5.2. Let A, A1, and A2 be dg categories. Let A = ⟨A1,A2⟩ be a semi-orthogonal decom-
position. Then J(A) = J(A1)⊕ J(A2). In particular, if A1, A2, and A are admissible subcategory
of some derived categories of smooth projective varieties, then it is a sum of complex torus.

Proof. Since periodic cyclic homology, negative cyclic homology, and topological K-theory are
additive invariants, J(A) ∼= J(A1)⊕ J(A2). □

Lemma 5.3. Let A = k[x]
(x2)

be a dg algebra over k with degree(x) = −1. Then HP1(A) = 0 and

Ktop
1 (A) is a torsion abelian group.

Proof. By [Lod13, Corollary 5.3.14], HP(A) ∼= HP(k), since k is a field of characteristic 0. Then by
[Lod13, Section 5.1.4], HP2n−1 = 0 for any n, thus in particular HP1(A) = HP1(k) = 0. According
to Theorem 4.5, Dperf (A) is an admissible subcategory of some projective variety. According to

Lemma 3.6, if HP1(A) = 0, then Ktop
1 (A) is a torsion abelian group. □

5.2. Intermediate Jacobian of nodal prime Fano threefolds. Let X be an 1-nodal maxi-
mally non-factorial index one prime Fano threefold of genus g ≥ 6, then there is a semi-orthogonal
decomposition,

Db(X) = ⟨Ku(X),OX ,U∨
X⟩.

Then by [KS23] and [KP23], the Kuznetsov component Ku(X) has further semi-orthogonal de-
composition Ku(X) = ⟨P,A⟩, where A ≃ Ku(Y ), for a smooth del Pezzo threefold Y if genus
g = 6, 8, 12. And if g = 7, then Ku(Y ) ≃ Db(C7) for a smooth curve C7 of genus 7.
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Theorem 5.4. Let X be a one-nodal maximally non-factorial prime Fano threefold of index one
and genus g = 6, 7, 8, 12. Then

J(Ku(X)hf) ∼= J(X).

In particular, if X is an index one nodal prime Fano threefold of degree 4d+2 such that d = 2, 3, 5,
then

J(Ku(X4d+2)hf) ∼= J(Yd).

Proof. LetX be a nodal prime Fano threefold as above, thenKu(X) = ⟨P,A⟩, where P is generated

by a P∞,2-object P such that ⟨P ⟩ ≃ Db(A), where A = k[x]
(x2)

is a dg algebra over k with degree(x) =

−1. Then by Proposition 2.11,
Ku(X)hf = ⟨Ahf , ⟨P ⟩hf⟩.

By [KS23, Proposition 3.3], ⟨P ⟩hf ≃ Perf(A). Then apply intermediate Jacobian J in Definition 5.1
and by Lemma 5.2, we get

J(Ku(X)hf) ∼= J(Ahf)⊕ J(Perf(A)),

where J(Perf(A)) ∼= 0 by Lemma 5.3. By Lemma 3.7, we have an isomorphism of principle polarized
abelian varieties

J(Ku(X)hf) ∼= J(Ahf).

• If X is a 1-nodal maximally non-factorial prime Fano threefold of index one and genus
g = 6, 8, then Ahf = Ku(Yd)hf = Ku(Yd), where Yd is a smooth del Pezzo threefold of

degree d = g−2
2 . Then J(Ahf) ∼= J(Ku(Yd)) ∼= J(Yd) by [JLLZ23, Lemma 3.9].

• If X is a 1-nodal maximally non-factorial prime Fano threefold of index one genus g = 12,
then by Theorem 4.5, Ahf = B, where B is generated by an exceptional collection of vector
bundles of length 4. Then J(B) ∼= 0 ∼= J(Y5).

• If X is a 1-nodal maximally non-factorial prime Fano threefold of index one and genus
g = 7 respectively. Then by Theorem 4.5, Ahf = Db(C) for some smooth curve of genus 7.
Then J(Ahf) ∼= J(C).

For all cases above, there is a Bridge construction for X, which is listed at the end of the article
[CKGS23]. Inspecting each case and looking at the proof of Theorem 4.6, we have the isomorphism
J(Ahf) ∼= J(X). □

Remark 5.5. The reason that we exclude the cases g = 9, 10 is it is not clear that the absorption
categories for these nodal Fano threefolds have the form as in Theorem 1.2.

5.3. Intermediate Jacobians for nodal del Pezzo threefolds. Let Y be a nodal del Pezzo
threefold of degree 5. By [Xie23, Theorem 4.8], it admits the semi-orthogonal decomposition

Db(Y ) = ⟨Db(Rm−1), D
b(R1),OY ,OY (1)⟩,

where 1 ≤ m ≤ 3 is the number of nodes of Y and Rm is a quiver algebra defined in [Xie23,
(1.2)]. It is known that the bounded derived category Db(Rn) admits a further semi-orthogonal

decomposition with a copy of Db(k) and n-copies of Db(K[x]
(x2)

), where A := K[x]
(x2)

is a DG-algebra

with deg(x) = −1. The obvious choice of the Kuznetsov component is the right orthogonal com-
plement of OY ,OY (1). Then its subcategory of homological finite objects Ku(Y )hf admits the
semi-orthogonal decomposition with components as copies of Db(k) and Dperf (A). By similar ar-
guments in Theorem 5.4, we get J(Ku(Y )hf) = 0. On the other hand, by [KS22, Proposition 6.19],

the quintic nodal del Pezzo threefold Y admits a small resolution Ŷ whose bounded derived cat-
egory has a full exceptional collection, thus J(Ŷ ) = 0. Then J(Y ) ∼= J(Ŷ ) = 0. Therefore we
have

J(Ku(Y )hf) ∼= J(Y ).
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5.4. Intermediate Jacobian of a threefold with a non-isolated singularity. We recall
an example of projective threefold with non-isolated singularity in [Var24, Section 4]. Let B =
P1
x:y×P1

s:t×P1
u:v and a curve C as the vanishing locus V (x, s2u). Then C is a copy of P1 intersecting

the thickened branch V (s2) ∼= P1
u:v ×

C[s]
s2

at a fat point. Let X be the blow up of B at the curve
C. Thus X is singular with a line of surface nodes compounded with a threefold nodal singularity
at one point and this singularity is non-isolated. Then there is a semi-orthogonal decomposition

Db(X) = ⟨Db(C), Db(B)⟩ = ⟨Db(P1
s:t),D, Db(B)⟩,

where D is the absorbing category, which is equivalent to Db( k[w,r]
(w2,r2)

) ≃ Db( k[w]
(w2)

⊗ k[r]
(r2)

), where

degree of w is 0 and degree r is −1. We define Ku(X) := ⟨Db(P1
s:t),D⟩. Then Ku(X)hf ≃

⟨Db(P1), Dperf (A)⟩, where A is k[w,r]
(w2,r2)

with degree w is 0 and degree r is −1. Since HP1(A) ∼=
HP1(

k[w]
(w2)

)⊗HP1(
k[r]
(r2)

) = 0 by Lemma 5.3, we have J(Ku(X)hf) = 0. But now it is not clear to us

how to compute intermediate Jacobian of X.

6. Application: (Birational) Categorical Torelli Theorems

6.1. (Birational) categorical Torelli theorem for nodal Fano threefolds. In this section,
we prove Theorem 1.5. First we show the intermediate Jacobians of the nodal Fano threefolds
considered in our article are determined by their Kuznetsov components.

Proposition 6.1. Let X and X ′ be 1-nodal maximally non-factorial prime Fano threefold of index
one and genus g = 6, 7, 8, 12 such that Ku(X) ≃ Ku(X ′), then J(X) ∼= J(X ′) as principal polarised
abelian varieties.

Proof. Firstly, the equivalence Ku(X) ≃ Ku(X ′) induces an equivalence Ku(X)hf ≃ Ku(X ′)hf .
Then, we have

⟨Ku(Y ),P⟩hf ≃ ⟨Ku(Y ′),P ′⟩hf .
According to Proposition 2.11, we have

⟨Ahf , ⟨P ⟩hf⟩ ≃ A′
hf , ⟨P ′⟩hf⟩.

Then apply intermediate Jacobian in Definition 5.1, Lemma 5.2 and Lemma 5.3 we get

J(Ahf)⊕ J(A) ∼= J(A′
hf)⊕ J(A′).

as abelian groups. Note that J(A) = J(A′) = 0 by Lemma 5.3. Thus we have

J(Ahf) ∼= J(A′
hf).

as abelian groups. If g ≥ 6 and g is even, then J(Ahf) ∼= J(Ku(Y )) for some smooth del Pezzo

threefold Y of degree d = g−1
2 . Then we get the isomorphism of complex torus

J(Ku(Y )) ∼= J(Ku(Y ′)),

since Y and Y ′ are smooth Fano variety and their Kuznetsov components are admissible subcate-
gories of Db(Y ) and Db(Y ′) respectively.

Now we show the isomorphism J(Ku(Y )) ∼= J(Ku(Y ′)) is an isomorphism of principle polarized
abelian varieties. According to Lemma 5.3 and Lemma 3.7, we have an isometry preserving the
Euler paring:

Ktop
1 (Ku(X)hf)tf ∼= Ktop

1 (Ku(Y ))tf .

Ktop
1 (Ku(X ′)hf)tf ∼= Ktop

1 (Ku(Y ′))tf .
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On the other hand, the equivalence Ku(X)hf ≃ Ku(X ′)hf gives an isometry preserving their Euler
pairing:

Ktop
1 (Ku(X)hf)tf ∼= Ktop

1 (Ku(X ′)hf)tf .

Thus we have a Hodge isometry

Ktop
1 (Ku(Y ))tf ∼= Ktop

1 (Ku(Y ′))tf .

Therefore we have an isomorphism of polarised abelian varieties J(Ku(Y )) ∼= J(Ku(Y ′)).
Note that by Theorem 5.4, J(Ku(Y )) ∼= J(Y ) ∼= J(X). Then we have J(X) ∼= J(X ′) as polarised

abelian varieties. The other cases are argued similarly, we omit the details. □

Next we prove (birational) categorical Torelli theorem for nodal prime Fano threefolds.

Theorem 6.2. Let X and X ′ be 1-nodal maximally non-factorial index one prime Fano threefold
of genus g ≥ 6 such that Ku(X) ≃ Ku(X ′), then X ≃ X ′.

Proof. We have Ku(X)hf ≃ Ku(X ′)hf . Apply intermediate Jacobian in Definition 5.1, by Theo-
rem 5.4 we get

J(X) ∼= J(Ku(X)hf) ∼= J(Ku(X ′)hf) ∼= J(X ′),

as polarised abelian varieties, then X ≃ X ′ from Theorem 4.6. □

Proposition 6.3. Let X,X ′ be 1-nodal maximally non-factorial prime Fano threefold of index one
and genus 7 with the assumption in Proposition 4.7, such that Ku(X) ≃ Ku(X ′), then X ∼= X ′.

Proof. We have an equivalence Ku(X)hf ≃ Ku(X ′)hf , then we get J(X) ∼= J(X ′) as polarised
abelian varieties. Thus the result follows from Proposition 4.7. □

As a corollary, we show that the bounded derived category Db(X) of coherent sheaves on these
nodal prime Fano threefolds determines their birational isomorphism class.

Corollary 6.4. Let X,X ′ be 1-nodal maximally non-factorial index one prime Fano threefolds of
genus g ≥ 6 such that Db(X) ≃ Db(X ′), then X ≃ X ′.

Proof. By Theorem 4.5, there is a semi-orthogonal decomposition

Db(X) = ⟨Ku(X),OX ,U∨
X⟩,

where U∨
X is the Mukai bundle of X. Then Db(X) ≃ Db(X ′) =⇒ Dperf(X) ≃ Dperf(X ′) =⇒

⟨Ku(X)hf ,OX ,U∨
X⟩ ≃ ⟨Ku(X ′)hf ,OX′ ,U∨

X′⟩. Then apply intermediate Jacobian construction in
Definition 5.1, we get J(Ku(X)hf) ∼= J(Ku(X ′)hf), then we get J(X) ∼= J(X ′) as polarised abelian
varieties. Thus we have X ≃ X ′ from Theorem 4.6. □

6.2. Derived Torelli theorem for nodal curves. In this section, we prove Theorem 1.5 (1).
Let Ci = C ′

i

⋃
C ′′
i be a reducible Gorenstein curve with C ′

i
∼= P1 and C ′′

i is a smooth curve of genus
g(C ′′

i ) > 1 and C ′
i

⋂
C ′′
i is a single point xi, which is smooth on C ′′

i .

Theorem 6.5. Let C1, C2 be nodal curves as above, if Db(C1) ≃ Db(C2), then C1
∼= C2.

Proof. By absorption of singularities [KS23, Proposition 6.15], there is a semi-orthogonal decom-
position

Db(Ci) = ⟨Pi, σ
∗
i (D

b(C ′′
i ))⟩.

Thus
Db(Ci)hf = ⟨(Pi)hf , D

b(C ′′
i )⟩.

If
Db(C1) ≃ Db(C2),
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then

Db(C1)hf ≃ Db(C2)hf .

Apply intermediate Jacobian in Definition 5.1, we get

J(Db(C1)hf) ∼= J(Db(C2)hf).

Then we get J(C ′′
1 )

∼= J(C ′′
2 ) as principal polarised abelian varieties. Then C ′′

1
∼= C ′′

2 by Torelli
theorem for smooth curves of genus greater than one. On the other hand, C ′

1
∼= C ′

2
∼= P1, thus we

get C1
∼= C2. □

7. Refined Categorical Torelli theorems for nodal prime Fano threefolds

In this section, we discuss refined categorical Torelli problems for 1-nodal maximally non-factorial
prime Fano threefolds. Let X be a 1-nodal maximally non-factorial prime Fano threefold of genus
6 or 8. Then by Theorem 1.5, the Kuznetsov component Ku(X) determines its birational isomor-
phism class. Thus it would be natural to ask what extra data we need to determine the isomorphism
class of these nodal Fano threefolds.

For the case of smooth prime Fano threefolds of index one and genus g ≥ 6, in the earlier paper
[JLZ22], the authors start with the semi-orthogonal decomposition of such a prime Fano threefold
X :

Db(X) = ⟨Ku(X),Q∨
X ,OX⟩,

such that the Kuznetsov component is the right orthogonal complement of OX and Q∨
X . Denote

by i : Ku(X) ↪→ ⟨Ku(X),Q∨
X⟩ the inclusion functor. Then they show the isomorphism class of

X is uniquely determined by the category Ku(X) together with a distinguished object i!Q∨
X . The

idea of the proof is to look at how the Kuznetsov component and the distinguished object produce
a classical invariant which is used to reconstruct X. For example, in the case of smooth Gushel-
Mukai threefold(g = 6), one can reconstruct the minimal model Cm(X) of Fano surface of conics
on X from Ku(X) via Bridgeland moduli space, and the distinguished object i!Q∨

X represents a
special point on Cm(X) whose blow up is the honest Fano surface C(X) of conics on X, which
determines the isomorphism class of X, by a result of Logchev [Log12].

For the case of 1-nodal maximally non-factorial prime Fano threefold X of index one and genus
g = 2d+ 2, we also consider its semi-orthogonal decomposition

Db(X) = ⟨Ku(X),OX ,U∨
X⟩,

where UX is the Mukai bundle, which produces the embedding ofX into Grassmannian Gr(2, d+3).
Moreover, by [KS23, Proposition 3.3], the Kuznetsov component Ku(X) has further decomposition

Ku(X) = ⟨P,AX⟩,

where the category P is generated by a P∞,2 object and AX is a smooth proper category, which
is equivalent to Kuznetsov component Ku(Y ) of a smooth del Pezzo threefold of degree d. Denote
LOX

U∨
X [−1] by Q∨

X . It is a vector bundle if d ≥ 3 since U∨
X is a globally generated vector bundle.

Still denote by i : Ku(X) ↪→ ⟨Ku(X),Q∨
X⟩ the inclusion functor. The distinguished object for X

should be defined as RP i
!Q∨

X . On the other hand, by classification [CKGS23] of 1-nodal maximally
non-factorial prime Fano threefold, such a degree 2d+2 1-nodal maximally non-factorial prime Fano
threefold is constructed from degree d del Pezzo threefold via Bridge construction. For example,
1-nodal maximally non-factorial Gushel-Mukai threefold X is uniquely determined by a smooth
quartic double solid Y and a line L ⊂ Y . Thus to show RP i

!Q∨
X determines the isomorphism class

of X, one should be able to produce a line on Y from this object. Similarly, for genus g = 8 case,
one should relate the object RP i

!Q∨
X to a conic on the cubic threefold we start with.
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Let Ỹ be the small resolution of X, whose semi-orthogonal decomposition is given in the proof
[KS23, Proposition 3.3] as

Db(Ỹ ) = ⟨O
Ỹ
(E −H),TO

L̃
(−1)(OỸ

(E −H)),RTO
L̃(−1)

(O
Ỹ
(E−H))(B̃Y ),OỸ

,U∨
Ỹ
⟩,

where TO
L̃
(−1)(OỸ

(E−H)) is the spherical twist of O
Ỹ
(E−H) via O

L̃
(−1), which fits the exact

triangle

O
L̃
(−1)[−2] → O

Ỹ
(E −H) → TO

L̃
(−1)(OỸ

(E −H)).

Denote by T the object TO
L̃
(−1)(OỸ

(E −H)). Note that RTO
L̃
(−1)(OỸ

(E−H))(B̃Y ) ≃ Ku(Y ), via

an equivalence σ∗ ◦ LT. Then we set Ku(Ỹ ) := ⟨O
Ỹ
(E − H), σ∗Ku(Y ),T⟩ = ⟨O

Ỹ
,U∨

Ỹ
⟩⊥, where

σ : Ỹ → Y is the blow up of Y along a smooth curve C of degree d− 1. Set

D = ⟨Ku(Ỹ ),Q∨
Ỹ
⟩,

where Q∨
Ỹ
∼= LO

Ỹ
U∨
Ỹ
[−1] is a rank d+1 vector bundle whenever d ≥ 3. Denote by i : Ku(Ỹ ) ↪→ D

the inclusion functor, then we produce an object RO
Ỹ
(E−H) ◦ LTi

!Q∨
Ỹ
∈ σ∗Ku(Y ), where (σ∗, σ∗)

induces an equivalence between Ku(Y ) and B̃Y . The next lemma expresses the object i!Q∨
Y as a

two-term complex, so that we can compute RO
Ỹ
(E−H) ◦ LTi

!Q∨
Ỹ
.

Lemma 7.1.

(1) RHom(Q∨
Ỹ
,O

Ỹ
(E −H)) = 0.

(2) RHom(Q∨
Ỹ
,T) = 0.

(3) RHom(U
Ỹ
,O

Ỹ
(E −H)) = k2.

(4) RHom(OE(E − F ),T) = k2[−2].

Proof. The first two equality simply follows from the proof in [Kuz04b, Proposition 3.3]. Indeed,
Q∨

Ỹ
∈ ⊥⟨O

Ỹ (E−H)
,T⟩. Thus the result follows. As RHom(U

Ỹ
,O

Ỹ
(E −H)) = RHom(O

Ỹ
,U∨

Ỹ
(E −

H)). Note that there is a short exact sequence [KS23, Lemma 2.13]:

0 → U∨
Ỹ
→ O(H)⊕2 → OF (3F ) → 0.

Twisted by a line bundle O
Ỹ
(E −H), we get

0 → U∨
Ỹ
(E −H) → O

Ỹ
(E)⊕2 → OF (E + F ) → 0.

Apply Hom(O
Ỹ
,−), we get a long exact sequence

0 → H•(Ỹ ,U∨
Ỹ
(E −H)) → H•(Ỹ ,O

Ỹ
(E)) → 0,

Indeed, H•(Ỹ ,OE(E+F )) ∼= H•(ρ∗OC ,OE(−1)⊗ρ∗OC(1)) ∼= H•(C, ρ∗OE(−1)⊗OC(1)) = 0 since
the rank of pushforward ρ∗OE(−1) is given by h0(F,OF (−1)) = 0. Thus RHom(U

Ỹ
,O(E −H) =

k2. Then (3) follows. Before proving (4), we first compute the right mutation RO
Ỹ
(E−H)UỸ

, which

is given by the exact triangle

RO
Ỹ
(E−H)UỸ

→ U
Ỹ
→ O

Ỹ
(E −H)⊗ RHom(U

Ỹ
,O

Ỹ
(E −H))∗.

then by (1), we get the triangle RO
Ỹ
(E−H)UỸ

→ U
Ỹ
→ O

Ỹ
(E −H)⊕2. But we also have a short

exact sequence

0 → U∨
Ỹ
(K

Ỹ
) → O

Ỹ
(E −H)⊕2 → OE(E − F ) → 0.
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Then we have RO
Ỹ
(E−H)UỸ

∼= OE(E − F )[−1]. Then we immediately have RHom(OE(E −
F ),O

Ỹ
(E −H)) = 0. Note that T is given by the triangle

O
Ỹ
(E −H) → T → O

L̃
(−1)[−1].

Then RHom(OE(E−F ),T) ∼= RHom(OE(E−F ),O
L̃
(−1)[−1]). Apply RHom(−,O

L̃
(−1)[−1]) to

the short exact sequence

0 → U∨
Ỹ
(K

Ỹ
) → O

Ỹ
(E −H)⊕2 → OE(E − F ) → 0,

Note that U∨
Ỹ
(K

Ỹ
) ∼= U

Ỹ
restricting L̃ is trivial, thus RHom(U

Ỹ
,O

L̃
(−1)[−1]) = 0. Then we have

RHom(OE(E − F ),O
L̃
(−1)[−1]) ∼= RHom(O

Ỹ
(E − H)⊕2,O

L̃
(−1)[−1]) = H•(O

L̃
(−2))⊕2[−1] ∼=

k2[−2]. Then (4) follows. □

Lemma 7.2.

(1) The distinguished object i!Q∨
Ỹ
∼= LQ∨

Ỹ
U
Ỹ
[1] ∼= LQ∨

Ỹ
U∨
Ỹ
(K

Ỹ
)[1].

(2) It fits the exact triangle

U
Ỹ
[1] → ii!Q∨

Ỹ
→ Q∨

Ỹ
.

Proof. The argument is almost the same as [JLZ22, Lemma 3.4]. First we have exact triangle

ii!Q∨
Ỹ
→ Q∨

Ỹ
→ LKu(Ỹ )

Q∨
Ỹ
.

Note that ⟨Ku(Ỹ ),Q∨
Ỹ
⟩ = ⟨SDQ∨

Ỹ
,Ku(Ỹ )⟩ = ⟨LKu(Ỹ )

Q∨
Ỹ
,Ku(Ỹ )⟩, where SD is the Serre functor

of D. Then we get the triangle

ii!Q∨
Ỹ
→ Q∨

Ỹ
→ SDQ∨

Ỹ
.

But it is not hard to see SDQ∨
Ỹ

∼= RO
Ỹ
(K

Ỹ
)(Q∨

Ỹ
(K

Ỹ
)[3]) ∼= RO

Ỹ
Q∨

Ỹ
⊗ O

Ỹ
(K

Ỹ
)[3] ∼= U∨

Ỹ
(K

Ỹ
)[2].

Then we got the exact triangle

U∨
Ỹ
(K

Ỹ
)[1] → ii!Q∨

Ỹ
→ Q∨

Ỹ
.

Note that U∨
Ỹ
(K

Ỹ
) ∼= U

Ỹ
since U

Ỹ
is a rank two bundle and determinant of U

Ỹ
and U∨

Ỹ
(K

Ỹ
) are

the same. Apply the left adjoint functor i∗D of i, we get i!Q∨
Ỹ
∼= LQ∨

Ỹ
U
Ỹ
[1]. □

Lemma 7.3. The left mutation LT◦RTOE(E−F ) ∼= OE(E−F ) and LTQ∨
Ỹ
fits into the triangle

T2 → Q∨
Ỹ
→ LTQ∨

Ỹ
.

Proof. There is a triangle

RTOE(E − F ) → OE(E − F ) → T⊕2[2].

Apply LT, we get the triangle LT◦RTOE(E−F ) → LTOE(E−F ) → 0, thus LT◦RTOE(E−F ) ∼=
LTOE(E − F ). We have a short exact sequence

0 → U
Ỹ
→ O(E −H)⊕2 → OE(E − F ) → 0.

Then apply RHom(T,−) we get

0 → RHom(T,U
Ỹ
) → RHom(T,O

Ỹ
(E −H)) → RHom(T,OE(E − F )),

where RHom(T,U
Ỹ
) = 0 and RHom(T,O

Ỹ
(E −H)) = 0 since there is a semi-orthogonal decom-

position

Db(Ỹ ) = ⟨O
Ỹ
(E −H),TO

L̃
(−1)(OỸ

(E −H)),RTO
L̃(−1)

(O
Ỹ
(E−H))(B̃Y ),OỸ

,U∨
Ỹ
⟩.
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Then RHom(T,OE(E−F )) = 0, thus LTOE(E−F ) ∼= OE(E−F ). Next we compute RHom(T,Q∨
Ỹ
).

Apply Hom(−,Q∨
Ỹ
) to the triangle

T → O⊕2

Ỹ
→ O

Ỹ
(H − E).

Then we get Hom•(T,Q∨
Ỹ
) ∼= Hom•+1(O

Ỹ
(H −E),Q∨

Ỹ
). Apply Hom(O

Ỹ
(H −E),−) to the short

exact sequence

0 → Q∨
Ỹ
→ O⊕6

Ỹ
→ U∨

Ỹ
→ 0.

We get Hom•(O
Ỹ
(H−E),U∨

Ỹ
) ∼= Ext•+1(O

Ỹ
(H−E),Q∨

Ỹ
). Thus Hom•(T,Q∨

Ỹ
) ∼= Hom•(O

Ỹ
(H−

E),U∨
Ỹ
) ∼= Hom•(U

Ỹ
,O

Ỹ
(E − H)) = k2 by Lemma 7.1. Then the desired triangle for LTQ∨

Ỹ
is

obtained.
□

Proposition 7.4. Let Y be a del Pezzo threefold of degree d ≥ 2 and σ : Ỹ → Y be the blow up of
a smooth rational curve C ⊂ Y of degree d− 1, then

(1) σ∗T fits into exact triangle

OY (−H)[1] → σ∗T[1] → OL(−1),

Thus σ∗T ∼= JL[−1], where JL is the twisted derived dual of ideal sheaf of the line L.
(2) σ∗OE(E − F ) = 0.
(3) σ∗U∨

Ỹ
∼= E ⊗OY (H), where E is a non-locally free sheaf that fits the short exact sequence

0 → E → O⊕2
Y → OC(p) → 0.

Proof. First note that we have an exact triangle

T → O⊕2

Ỹ
→ O

Ỹ
(H − E).

Then we get a triangle

σ∗T → O⊕2
Y

ξ−→ OY (H)⊗ IC ,

where C is a smooth rational curve of degree d−1 on Y . Note that the map ξ is not surjective and
the image of ξ is OY (H)⊗ ID, where D is the codimension two linear section, which is a degree d
elliptic curve containing C and the residual curve of C in D is a line L ⊂ Y . Taking cohomology
with respect to the standard heart, we get a long exact sequence

0 → H0(σ∗T) → O⊕2
Y → OY (H)⊗ IC → H1(σ∗T) → 0.

Then we get two short exact sequence

0 → H0(σ∗T) → O⊕2
Y → ID ⊗OY (H) → 0,

and

0 → OY (H)⊗ ID → OY (H)⊗ IC → H1(σ∗T) → 0.

It is clear that H0(σ∗T) ∼= OY (−H) and H1(σ∗T) ∼= OL(−1). Then we get

OY (−H)[1] → σ∗T[1] → OL(−1),

Then σ∗T[1] ∼= JL, thus σ∗T ∼= JL[−1], which proves (1). We apply the Grothendieck-Riemann-
Roch formula to compute the character of σ∗OE(E − F ), which is 0 and note that RiOE(E −
F ) ⊗ Oy

∼= Hi(F,OF (−1)) = 0 for all i ≥ 0, thus σ∗OE(E − F ) = 0, and this proves (2). Next,
note that there is a short exact sequence

0 → U∨
Ỹ
→ O

Ỹ
(H)⊕2 → OE(dF ) → 0.
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Apply σ∗ to the sequence above we get a short exact sequence

0 → σ∗U∨
Ỹ
→ OY (H)⊕2 → OC(d) → 0,

since R1σ∗U∨
Ỹ
= 0. Then we twist the short exact sequence obtained by the line bundle OY (−H),

we get a short exact sequence

0 → σ∗U∨
Ỹ
⊗OY (−H) → O⊕2

Y → OC(1) → 0.

Then σ∗U∨
Ỹ
⊗ OY (−H) ∼= E, where E is the non-locally free sheaf associated with the smooth

rational curve C of degree d− 1. Then σ∗U∨
Ỹ
∼= E ⊗OY (H), which proves (3). □

Now we compute the object RO
Ỹ
(E−H) ◦LTi

!Q∨
Ỹ
. We omit the subscript if there is no confusion.

Then we apply RO(E−H) ◦ LT to the triangle U [1] → ii!Q∨ → Q∨. We get

LTUỸ
[1] → LTii

!Q∨
Ỹ
→ LTQ∨

Ỹ
,

where LTUỸ
∼= U

Ỹ
since Hom(T,U

Ỹ
) = 0. Then we applyRO

Ỹ
(E−H) on U

Ỹ
[1], we getRO

Ỹ
(E−H)UỸ

[1] ∼=
OE(E − F ). On the other hand, LTQ∨

Ỹ
is given by the triangle

T2 → Q∨
Ỹ
→ LTQ∨

Ỹ
.

Then we apply RO
Ỹ
(E−H) to the triangle above. Since Hom(T,O

Ỹ
(E −H)) = Hom(Q∨

Ỹ
,O

Ỹ
(E −

H)) = 0, thus we have the triangle

T2 → Q∨
Ỹ
→ RO

Ỹ
(E−H) ◦ LTQ∨

Ỹ
.

Then we get a triangle

OE(E − F ) → RO
Ỹ
(E−H) ◦ LTii

!Q∨
Ỹ
→ RO

Ỹ
(E−H) ◦ LTQ∨

Ỹ
.

Finally, we apply the functor σ∗ to push forward the object above into Ku(Y ). Then we get

σ∗ ◦RO
Ỹ
(E−H) ◦ LTii

!Q∨
Ỹ
∼= σ∗ ◦RO

Ỹ
(E−H) ◦ LTQ∨

Ỹ
,

since σ∗OE(E − F ) = 0 by Proposition 7.4(2). On the other hand, by Lemma 7.3, the object
LTQ∨

Ỹ
fits into the exact triangle

T2 → Q∨
Ỹ
→ LTQ∨

Ỹ
.

Definition 7.5. We define the gluing object G as follows

G = RO
Ỹ
(E−H) ◦ LTQ∨

Ỹ
∈ σ∗(Ku(Y )).

Then G fits into the triangle

σ∗T
2 → σ∗Q∨

Ỹ
→ σ∗(G).

Note that by Proposition 7.4, σ∗T[1] ∼= J ⊕2
L and σ∗Q∨

Ỹ
fits into the short exact sequence

0 → σ∗Q∨
Ỹ
→ O⊕(d+3)

Y → E ⊗OY (H) → 0.

Next we identify the distinguished object σ∗(G) with the (acyclic extension of) non-locally free
instanton sheaf on smooth del Pezzo threefold Y of degree d associated to the smooth rational
curve C of degree d− 1 we start with.
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7.1. Bridge construction from Del Pezzo threefolds of degree d ≥ 3. Let d ∈ {2, 3, 4, 5}.
Let X be a 1-nodal maximally non-factorial prime Fano threefold of genus 2d + 2 obtained via
the bridge construction from a smooth Del Pezzo threefold Y := Yd and a smooth rational curve
C ⊂ Y of degree d− 1.

From C we obtain two sheaves E and F , which both fail to be locally free along C. Letting p
be a point of C, the sheaves E and F are described as kernels of the evaluation maps as follows of
OC(p) and OC((d− 2)p), so we have exact sequences

0 → E → O⊕2
Y → OC(p) → 0,(2)

0 → F → O⊕(d−1)
Y → OC((d− 2)p) → 0.(3)

In other words E = LOY
OC(p)[−1] and F = LOY

OC((d− 2)p)[−1] ∼= LOY
F .

For d = 2 we have F = IC and for d ≥ 3 and for any base-point-free pencil of sections of
OC((d− 2)p), we get an instanton sheaf F0 of rank 2 on Y fitting into

0 → F0 → O⊕2
Y → OC((d− 2)p) → 0.

Then F is the acyclic extension of F0 in the sense of [Kuz12, Definition 1.1], fitting into

(4) 0 → F0 → F → O⊕(d−3)
Y → 0.

We have H∗(F0(−1)) = 0 and H∗(F (−1)) = H∗(F ) = 0 so F lies in Ku(Y ).

Theorem 7.6. Let X be a 1-nodal maximally non-factorial prime Fano threefold of degree 2d+2
obtained via the bridge construction from a smooth Del Pezzo threefold Y of degree d ≥ 2 and a
smooth rational curve C ⊂ Y of degree d− 1. Consider the gluing object σ∗(G) ∈ Ku(Y ). Then

σ∗(G) ≃ F.

Proof of Theorem 7.6 for d ≥ 3. Recall that, given the smooth curve C ⊂ Y , L is the residual line
of C with respect to pencil of hyperplane sections of Y containing C. By definition, the gluing
object G is

G = RO
Ỹ
(E−H) ◦ LTi

!Q∨
Ỹ
∈ σ∗(Ku(Y )).

We note that σ∗(G) fits into a canonical exact sequence

(5) 0 → OY (−1)⊕2 → σ∗(Q∨
Ỹ
) → σ∗(G) → OL(−1)⊕2 → 0,

while σ∗(Q∨
Ỹ
) fits into

(6) 0 → σ∗(Q∨
Ỹ
) → O⊕(d+3)

Y → E(1) → 0.

Indeed, to check (5), by Proposition 7.4, we write the exact sequence

0 → H−1(σ∗(G)) → OY (−1)⊕2 → σ∗(Q∨
Ỹ
) → H0(σ∗(G)) → OL(−1)⊕2 → 0.

Hence it suffices to check that H−1(σ∗(G)) = 0 and actually showing that rk(H−1(σ∗(G))) = 0 is
enough as this sheaf is torsion-free. The map f : OY (−1)⊕2 → σ∗(Q∨

Ỹ
) is dual to

g : σ∗(Q∨
Ỹ
)∨ → IL/Y (1)⊕2,

hence rk(im(f)) = rk(im(g)) and we have to verify rk(im(g)) = 2. Since the map g comes from
evaluation of morphisms toward IL/Y (1), we must have Hom(im(g), IL/Y (1)) = k2. So, by sta-
bility of IL/Y and σ∗(Q∨

Ỹ
), if we had rk(im(g)) < 2 then im(g) would be isomorphic to IZ,Y (1)

for some subscheme Z of Y of codimension at least 2, with L ⊂ Z. But then we would get
Hom(im(g), IL/Y ) = k, a contradiction.
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So (5) is proved. Our main task now it to show that F fits into a canonical exact sequence

0 → OY (−1)⊕2 → σ∗(Q∨
Ỹ
) → F → OL(−1)⊕2 → 0,

which has the same form as (5). Since these sequences are canonically attached to C, we deduce
that F ≃ σ∗(G). First, recall that L intersects C at a subscheme Z of length 2. Observe that
T or1(OC ,OL) ≃ OZ so that, restricting (3) to L, we get

0 → OZ → F |L → O⊕(d−1)
L → OZ → 0.

This implies

F |L ≃ OZ ⊕OL(−1)⊕2 ⊕O⊕(d−3)
L .

We define F1 = ker(F → OL(−1)⊕2), the map here being the obvious surjection, hence:

(7) 0 → F1 → F → OL(−1)⊕2 → 0.

Next, using (7) we compute

Ext1(F1,OY (−1)) = k.

Indeed, F satisfies H∗(F (−1)) = 0 and Ext2(OY ,OL) ≃ H0(OL) = k. Therefore we get a coherent
sheaf F2, canonically defined by C, fitting into

(8) 0 → OY (−1)⊕2 → F2 → F1 → 0,

so that (7) and (8) read:

0 → OY (−1)⊕2 → F2 → F → OL(−1)⊕2 → 0.

So it remains to check that F2 ≃ σ∗(Q∨
Ỹ
), which, in view of (6), amounts to write:

0 → F2 → O⊕(d+3)
Y → E(1) → 0.

To achieve this, we isolate a canonical extension class:

(9) k ⊂ Ext1(E(1), F )

To see this, applying Hom(−, F (−1)) to (2) and using the vanishing H∗(F (−1)) = 0 we get

Ext1(E(1), F ) ≃ Ext2(OC(dp), F ).

Apply now Hom(−,OC(dp)) to (3) and note Ext1(OC(dp),OY ) = 0. Also, by the local-to-global
spectral sequence, we get

Ext1(OC(p)⊗OY (1),OC((d− 2)p)) ≃ H1(Hom(OC(dp),OC((d− 2)p))) = H1(OC(−2p)) = k,

and this copy of k fits into Ext2(OC(dp), F ). Then, we get:

k = H1(OC(−2p)) ⊂ Ext2(OC(dp), F ) ≃ Ext1(E(1), F ).

Now, from (9) we construct a canonical extension

(10) 0 → F → F̃ → E(1) → 0.

We restricting it to L and show that E|L ≃ OZ ⊕OL(−1)⊕2 by applying the argument used to

compute F |L. Then, we see that the torsion-free part of F̃ |L is OL(−1)⊕2⊕O⊕(d−1)
L , hence we get

a canonical surjection F̃ → OL(−1)⊕2, whose kernel we call F̃1. This fits into

0 → F1 → F̃1 → E(1) → 0.

We have the vanishing H∗(E) = 0, hence Ext∗(E(1),OY (−1)) = 0 so from the previous se-
quence:

Ext1(F̃1,OY (−1)) ≃ Ext1(F1,OY (−1)) = k2.
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We get a sheaf F̃2 fitting as a natural extension:

0 → OY (−1)⊕2 → F̃2 → F̃1 → 0,

This is summarized in the diagram

OY (−1)⊕2 // F2

��

// F1

��

OY (−1)⊕2 // F̃2

��

// F̃1

��
E(1) E(1)

To finish, we have to prove that F̃2 ≃ O⊕(d+3)
Y . However, we check that the Chern character

of F̃2 is d + 3 and, since H∗(F2) = 0 the central column of the above diagram gives h0(F̃2) =

h0(E(1)) = d+ 3. Therefore F̃2 ≃ O⊕(d+3)
Y . □

Remark 7.7. Note that we have:

Ext1(E(1),OY ) ≃ H2(E(−1))∨ ≃ H1(OC((2− d)p))∨ ≃ H0(OC((d− 4)p)) = kd−3.

Therefore, from (10) we get a canonical surjection

(11) Hom(F,OY ) → Ext1(E(1),OY ) = kd−3.

Note that Hom(F,OY ) ≃ Hom(F,OY )
∨. In addition, since C is isomorphic to P1 = P(V ), the

space H0(F ) = H0(OC((d− 2)p)) = Sd−2V is equipped with a canonical duality. Via this duality,
the map (11) gives an injection kd−3 → Hom(F,OY ) and an instanton sheaf F0 fitting into (4).

Proof of Theorem 7.6 for d = 2. For d = 2, we replace σ∗Q∨
Ỹ
with LOY

E(1)[−1]. This gives a two-

term complex, since the evaluation of global section of E(1) appearing in the exact sequence (6)
is no longer surjective. Instead, we get

0 → H−1(LOY
E(1)) → O⊕5

Y → E(1) → H0(LOY
E(1)) → 0.

To identify the terms of this sequence, we note that (2) gives rise to the commutative diagram

(12) 0

��

0

��
I⊕2
C

��

I⊕2
C

��
0 // E //

��

O⊕2
Y

��

// OC(p) // 0

0 // OC(−p)

��

// O⊕2
C

��

// OC(p) // 0

0 0

We use the leftmost column to evaluate global sections of E(1). Since the base locus of the
pencil of hyperplanes through C is C∪L and C∩L is a subscheme of length 2, evaluation of global
sections gives a long exact sequence:

0 → OY (−1) → O⊕2
Y → IC(1) → OL(−1) → 0.
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Therefore, the leftmost column of Diagram (12) gives H0(LOY
E(1)) ≃ OL(−1)⊕2 and:

0 → H−1(LOY
E(1)) → O⊕5

Y → E(1) → OL(−1)⊕2 → 0,

with

(13) 0 → OY (−1)⊕2 → H−1(LOY
E(1)) → IC → 0.

Note that the gluing object σ∗G fits into the triangle

σ∗T
2 → σ∗Q∨

Ỹ
→ σ∗G.

We get a long exact sequence by taking the cohomology with respect to the standard heart:

0 → H−1(σ∗G) → H0(σ∗T
2)

β−→ H0(σ∗Q∨
Ỹ
) → H0(σ∗G) → H1(σ∗T

2)
α−→ H1(σ∗Q∨

Ỹ
) → H1(σ∗G) → 0,

whereH0(σ∗Q∨
Ỹ
) ∼= H−1(LOY

E(1)) and from the leftmost column we know the sheafOY (−1)⊕2 ∼=
H−1(LOY

(IC ⊗ OY (H)))⊕2. Further note that H0(σ∗T
2) ∼= H−1(LOY

(IC ⊗ OY (H)))⊕2. Then
H−1(σ∗G) ∼= Kerβ = 0. Then we have a long exact sequence

0 → OY (−1)⊕2 −→ H−1(LOY
E(1)) −→ H0(σ∗(G)) −→

−→ OL(−1)⊕2 α−→ OL(−1)⊕2 −→ H1(σ∗(G)) → 0.

It remains to show that the map α is an isomorphism, then H1(σ∗G) = 0 and σ∗G is a sheaf
and it is isomorphic to H0(σ∗G) ∼= IC , where C is the line on the quartic double solid Y we
start with. To achieve this, by definition, we know H1(σ∗T

2) ∼= H0(LOY
(IC ⊗ OY (H)))⊕2 and

H1(σ∗Q∨
Ỹ
) ∼= H0(LOY

E(1)) ∼= H0(LOY
(IC ⊗ OY (H)))⊕2 by the short exact sequence from the

leftmost column. Thus α is an isomorphism.

7.2. Comparing with smooth case. In [JLZ22], the authors show the gluing object i!Q∨
X for a

smooth prime Fano threefold of genus 8 corresponds to a rank two instanton bundle E on a cubic
threefold Y via the Kuznetsov type equivalence Ku(X) ≃ Ku(Y )(Conjecture 1.1). Together with
the results in this section, they provide evidence for the following conjecture.

Conjecture 7.8. Let Yd be a smooth del Pezzo threefold of Picard rank one and degree d ≥ 3. Then
all smooth prime Fano threefold X of index one and genus g = 2d+2 such that Φ : Ku(X) ≃ Ku(Y )
is a Kuznetsov-type equivalence is parametrized by rank two instanton bundle Ed−1 of charge d− 1
on Yd and

Φ(i!Q∨
X) ∼= LOY

Ed−1,

□

7.3. Existence of family of gluing objects. LetX be an 1-nodal maximally non-factorial prime
Fano threefolds of genus g = 2d+2, d ≥ 2 constructed from bridge in [KS23, Proposition 2.6]. Then

by [KS23, Theorem 3.6], there is a family X f−→ B such that the central fiber Xo
∼= X and the other

fiber Xb, b ̸= o is smooth prime Fano threefold of the same genus and their intermediate Jacobians
are isomorphic. Furthermore, there is a family of vector bundles UX such that its restriction on
central fiber UXo

∼= UX and UXb
is the Mukai bundle for smooth Fano threefold Xb. Moreover, there

is a semi-orthogonal decomposition

Db(X ) = ⟨ι∗PX , ÃX , f
∗Db(B), f∗Db(B)⊗ U∨

X ⟩,

where ι : X ↪→ X is the embedding of the central fiber and PX is the P∞-object. The category ÃX
is the family of categories such that AXo ≃ Ku(Yd), where Yd is the del Pezzo threefold of degree
d and AX⌊ is the semi-orthogonal component of ⟨OXb

,U∨
Xb

⟩ for each smooth prime Fano threefold
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Xb of genus 2d + 2 and they are all equivalent to AXo ≃ Ku(Yd). Note that we can rewrite the
semi-orthogonal decomposition of Db(X ) as

Db(X ) = ⟨ι∗PX , ÃX , f
∗Db(B)⊗Q∨

X , f
∗Db(B)⟩,

where Q∨
X is the family of objects such that its restriction to the central fiber is isomorphic to

LOX
U∨
X [−1] and its restriction to other fiber is the dual of tautological quotient bundle. Define

the family of Kuznetsov components K̃u(X ) := ⟨ι∗PX , ÃX ⟩ and denote by I : K̃u(X ) ↪→ O⊥
X

the inclusion functor. Define a family of objects E := Rι∗PX
I !Q∨

X over B. It is easy to see that

Eo
∼= RPX

i!Q∨
X and Eb

∼= i!Q∨
Xb

for b ̸= o. We prove the following property.

Proposition 7.9. Let X be an 1-nodal maximally non-factorial prime Fano threefolds of genus
g = 2d+ 2, d ≥ 2 constructed via bridge. Let E be the family of objects constructed above. Then it
induces a family F such that

(1) Fo
∼= IC and Fb

∼= i!QXb
for all b ̸= o, if d = 2;

(2) Fo
∼= F0 and Fb

∼= Eb, where F0 is a rank two stable instanton sheaf on the cubic threefold
Y , which is associated with the smooth conic C and Eb is a rank two instanton bundle on
Y , if d = 3.

(3) Fo
∼= LOY

F0, which is an acyclic extension of non-locally free rank two instanton sheaf F0,
which is associated with the smooth rational curve C of degree d− 1. And Fb

∼= LOY
Ed−1,

where Ed−1 is a rank two instanton bundle of charge d− 1 on Yd, if d ≥ 4.

Before proving the proposition, we first show the gluing objects constructed in two ways coincide.

Lemma 7.10. There is an isomorphism of two objects:

σ∗ ◦ LT ◦RT ◦RO
Ỹ
(E−H)i

!Q∨
Ỹ
∼= σ∗ ◦RO

Ỹ
(E−H) ◦ LTi

!Q∨
Ỹ
.

Proof. By Definition 7.5, it remains to show that the object σ∗ ◦LT ◦RT ◦RO
Ỹ
(E−H)i

!Q∨
Ỹ
∼= σ∗ G.

We compute the object RT ◦ RO
Ỹ
(E−H)i

!Q∨
Ỹ
. First we apply RT ◦ RO

Ỹ
(E−H) to the triangle

U
Ỹ
[1] → i!Q∨

Ỹ
→ Q∨

Ỹ
, we get

RT ◦RO(E−H)UỸ
[1] → RT ◦RO

Ỹ
(E−H)i

!Q∨
Ỹ
→ Q∨

Ỹ
,

by Lemma 7.1(1) and (2).
Note that by the proof of Lemma 7.1, RO

Ỹ
(E−H)UỸ

[1] ∼= OE(E − F ). Then, finally we get the

exact triangle
RTOE(E − F ) → RT ◦RO

Ỹ
(E−H)i

!Q∨
Ỹ
→ Q∨

Ỹ
,

with
RTOE(E − F ) → OE(E − F ) → T⊕2[2].

Then we apply LT to the exact triangles above, we get

LT ◦RTOE(E − F ) → LTRO
Ỹ
(E−H)i

!Q∨
Ỹ
→ LTQ∨

Ỹ
,

where LT ◦RTOE(E − F ) ∼= OE(E − F ), by Lemma 7.3. Then we have the triangle

OE(E − F ) → LTRO
Ỹ
(E−H)i

!Q∨
Ỹ
→ LTQ∨

Ỹ
.

Then we apply σ∗ to the triangle above, and we get

σ∗LTRO
Ỹ
(E−H)i

!Q∨
Ỹ
∼= σ∗LTQ∨

Ỹ
,

since σ∗OE(E − F ) = 0 by Proposition 7.4(2). Note that there is an exact triangle

T2 → Q∨
Ỹ
→ LTQ∨

Ỹ
,
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by Lemma 7.3. Thus by applying σ∗ to this triangle, we get

σ∗ G ∼= σ∗ ◦ LT ◦RT ◦RO
Ỹ
(E−H)i

!Q∨
Ỹ
.

□

Next, we prove Proposition 7.9.

Proof. First, we have π∗i!Q∨
X

∼= i!Q∨
Ỹ
, where π : Ỹ → X is a small resolution. Indeed, the object

i!Q∨
X fits into the exact triangle

UX [1] → i!Q∨
X → Q∨

X .

Apply π∗ to the triangle, and we get the triangle

U
Ỹ
[1] → π∗i!Q∨

X → Q∨
Ỹ
.

Note that Ext1(Q∨
Ỹ
,U

Ỹ
[1]) ∼= Ext1(U∨

Ỹ
,Q∨

Ỹ
) = k, thus the desired result holds. By Theorem 2.7,

π∗RT ◦RO
Ỹ
(E−H)i

!Q∨
Ỹ
∼= RPX

i!Q∨
X .

As the pair of functors (π∗, π
∗) induces the equivalence of categories: RTBỸ

≃ ÃX , so for an object
F ∈ RTBỸ

, π∗ ◦ π∗(F ) ∼= F . Then we have

π∗ ◦ π∗RT ◦RO
Ỹ
(E−H)i

!Q∨
Ỹ
∼= RT ◦RO

Ỹ
(E−H)i

!Q∨
Ỹ
∼= π∗RPX

i!Q∨
X .

Then we apply LT to the above isomorphism, we get

LT ◦RT ◦RO
Ỹ
(E−H)i

!Q∨
Ỹ
∼= LT ◦ π∗RPX

i!Q∨
X ∈ B

Ỹ
.

Finally, we apply σ∗ to get

σ∗ ◦ LT ◦ π∗RPX
i!Q∨

X
∼= σ∗ ◦ LT ◦RT ◦RO

Ỹ
(E−H)i

!Q∨
Ỹ
∼= σ∗G ∈ Ku(Y ).

(1) If d = 2, Eo
∼= RPX

i!Q∨
X , applying the equivalence σ∗ ◦LT ◦π∗ : ÃX ≃ Ku(Y ), we get σ∗G,

which is the ideal sheaf IC of the conic C on the quartic double solid Y2, by Theorem 7.6.
On the other hand, Eb(b ̸= o) ∼= i!Q∨

Xb
is the gluing object for smooth Gushel-Mukai

threefold Xb.
(2) If d = 3. A similar process gives a non-locally free instanton sheaf of rank two on the cubic

threefold Y3, corresponding to Eo. For b ̸= o, Eb is the gluing object i!Q∨
X , where X are

smooth prime Fano threefolds of index one and degree 14. Applying the Kuznetsov-type
equivalence Ψ : AX ≃ Ku(Y3), we get rank two instanton bundles on the cubic threefold
Y3, by [JLZ22, Theorem 8.13].

(3) If d = 4 or 5, similar process gives the desired results, by Theorem 7.6.

□

7.4. Refined Categorical Torelli theorem for 1-nodal Fano threefolds. Let X be a 1-nodal
maximally non-factorial prime Fano threefolds of genus g ≥ 6 (via bridge construction from a del
Pezzo threefold), whose Kuznetsov component Ku(X) admits a semi-orthogonal decomposition

Ku(X) = ⟨P, ÃX⟩.

In this section, we prove the isomorphism class X is determined by ÃX and the distinguished

object RP i
!Q∨

X ∈ ÃX .

Theorem 7.11. Let X,X ′ be 1-nodal Fano threefolds above and Φ : ÃX ≃ ÃX′ be the equivalence
such that Φ(RP i

!Q∨
X) ∼= RP ′i!Q∨

X′, then X ∼= X ′.
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Proof. Let Ψ : ÃX ≃ Ku(Y ) and Ψ′ : ÃX′ ≃ Ku(Y ′) be the equivalences given by [KS23, Propo-

sition 3.3, Remark 3.4]. Since Φ : ÃX ≃ ÃX′ is an equivalence, then it induces an equivalence

Φ̃ : Ku(Y ) ≃ Ku(Y ′) such that Φ̃ ◦Ψ ∼= Ψ′ ◦ Φ. By assumption, we have

(Ψ′)−1 ◦ Φ̃ ◦Ψ(RP i
!Q∨

X) ∼= RP ′i!Q∨
X′ .

Then we get

Φ̃ ◦Ψ(RP i
!Q∨

X) ∼= Ψ′(RP ′i!Q∨
X′).

By Theorem 7.6 and Lemma 7.10,

Ψ(RP i
!Q∨

X) ∼=


IL, g = 6

E, g = 8

LOY
Ed−1, g = 10, 12.

Where E is a rank two stable instanton sheaf on the correspondent cubic threefold Y3 and Ed−1 is
a rank two stable instanton sheaf of charge d− 1 on correspondent del Pezzo threefold of degree d.

Note that Φ̃ : Ku(Yd) ≃ Ku(Yd) is an equivalence of Kuznetsov components of del Pezzo threefold
Yd, d ≥ 2 Then we get 

Φ̃(IL) ∼= IL′ , g = 6

Φ̃(E) ∼= E′, g = 8

Φ̃(LOY
(Ed−1)) ∼= LOY

(E′
d−1), g = 10, 12.

By [FLZ23, Theorem 7.1, Theorem 8.2] and the image of Φ̃ shown above, there is a unique isomor-

phism f : Yd ∼= Y ′
d, d ≥ 2 such that Φ̃ = f∗ : Ku(Yd) ≃ Ku(Y ′

d). Then by construction of (acyclic
extension of) stable and non-locally free instanton sheaves(Section 7.1), we get X ∼= X ′. □

Corollary 7.12. Let X be a 1-nodal maximally non-factorial prime Fano threefolds of genus
g = 2d + 2 ≥ 6(constructed via the bridge from del Pezzo threefold of degree d ≥ 2). Then Xg is
uniquely determined by the pair (Yd, Fd), where

Fd =


IL, d = 2

E, d = 3

LOY
(Ed−1), d = 4, 5.

8. Fiber of categorical period map via Bridgeland stable objects

The categorical period map was introduced in [JLLZ21a, Remark 10.2] but was only rigorously
defined in a recent paper [KS23, Section 1.7]. Using [JLLZ21a, Theorem 10.3] and [BP23, The-
orem 1.9], one describes the fiber of categorical period map over the Kuznetsov component of a
general ordinary Gushel-Mukai threefold X(the family of all Gushel-Mukai threefolds X ′ such that
Ku(X ′) ≃ Ku(X)), which is disjoint union of two surfaces, called double EPW surface and double
dual EPW surface. It is also shown in [JLLZ21a] that these two surfaces are Bridgeland moduli
space of stable objects of certain numerical characters in the Kuznetsov component Ku(X). The
semi-orthogonal decomposition of X is given by

Db(X) = ⟨Ku(X),Q∨
X ,OX⟩,

where Q∨
X is the dual of tautological quotient bundle and denote by i : Ku(X) ↪→ O⊥

X the inclu-
sion functor. As is shown in [JLLZ21a, Theorem 9.2] and [JLZ22, Theorem 1.3] that a smooth
Gushel-Mukai threefold X is uniquely determined by its Kuznetsov component Ku(X) and a dis-
tinguished object i!Q∨

X , called gluing object. Thus the fiber P−1
cat([Ku(X)]) of the categorical period



30 DANIELE FAENZI, XUN LIN AND SHIZHUO ZHANG

map Pcat over its Kuznetsov components Ku(X) is the family of gluing objects i!Q∨
X′ ∈ Ku(X ′)

when X ′ varies but the equivalence class of Kuznetsov components is fixed. Since the object i!Q∨
X′

is Bridgeland stable with respect to an appropriate stability condition σ on Ku(X), this makes the
fiber as an open subset of the union of the moduli spaces

⋃
χ(v,v)=χ([i!Q∨

X ],[i!Q∨
X ])Mσ(Ku(X),v),

where χ(−,−) : N (X) × N (X) → Z is the Euler pairing on the numerical Grothendieck group
N (X) of the Kuznetsov component Ku(X). In this section, we apply similar idea to compute the
fiber of categorical period map(defined in [KS23, Section 1.7]) for 1-nodal maximally non-factorial
prime Fano threefolds of genus g ≥ 62.

We follow the style of notation in [KS23, Section 1.6, Section 5]. Denote by MFMXg the mod-
uli stack of Fano-Mukai pairs for genus g prime Fano threefolds and MFMXg the substack of
smooth Fano-Mukai pairs. Denote by MFCYd

the moduli stack of pairs (Yd, C) of smooth del

Pezzo threefold Yd of degree d ≥ 2 and degree d− 1 rational curve C ⊂ Yd. Denote by MFMXg

(1)

the 1-nodal loci of MFMXg and MFMXg

≤1
the at most 1-nodal loci. Denote by MFMX2d+2,Yd

(1)

the del Pezzo component of MFMXg

(1)
, which is the loci coming from bridge construction from del

Pezzo threefold. Denote by MFMXg

≤1−mnf ⊂ MFMXg

≤1
the loci consisting of smooth component

MFMXg and 1-nodal maximally non-factorial component. We also denote by MFMX2d+2,Yd
:=

MFMX2d+2

⋃
MFMX2d+2,Yd

(1)
the open substack of MFMX2d+2

. Denote by

PA : MFMXg → MTrCat

the categorical period map associated with the component AX ⊂ Db(X ) with semi-orthogonal
decomposition

Db(X ) = ⟨AX , f
∗Db(S)⊗Q∨

X , f
∗Db(S)⟩,

where f : X → S is a family of smooth prime Fano threefolds of genus g ≥ 6. Then we denote by

PÃ : S → MTrCat

the categorical period map associated with the component ÃX with semi-orthogonal decomposition
of Db(X ) in [KS23, (46)], where S is a substack of MFMXg for a family (f : X → S,UX ) of Fano-
Mukai pairs.

First, we rephrase the ”classical” results for smooth prime Fano threefolds.

Proposition 8.1.

(1) The fiber of categorical period map

PA : MFMX6 → MTrCat.

over the Kuznetsov component Ku(X) of a general Gushel-Mukai threefold X is the disjoint

union of two surfaces: Ỹ ≥2
A⊥

⋃
Ỹ ≥2
A , where A is the corresponding Lagrangian subspace for

X.
(2) The fiber of categorical period map

PA : MFMX8 → MTrCat.

over the Kuznetsov component Ku(X) of a smooth genus 8 index one prime Fano threefold
X is the locus of rank two instanton bundle over a cubic threefold Y .

Proof.

2we believe the results are known to the expert, we write it down for pointing out its connection to Bridgeland
moduli spaces
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(1) The fiber of categorical period map consists of all Gushel-Mukai threefold X ′ such that
Ku(X ′) ≃ Ku(X), which is parametrized by the gluing objects i!Q∨

X′ when X ′ varies. As a
result the fiber is contained in Bridgeland moduli space Mσ(Ku(X),v)

⋃
Mσ(Ku(X),w),

where v,w ∈ N (Ku(X)) such that χ(v, v) = χ(w,w) = χ([i!Q∨
X′ ], [i!Q∨

X′ ]) = −1, and
by [JLLZ21a, Theorem 9.3] or [FGLZ24, Theorem B.8], the fiber of PA is contained in

Ỹ ≥2
A⊥

⋃
Ỹ ≥2
A . On the other hand, each point in the union of the two surfaces determines

a Gushel-Mukai threefold, which is either period partner of period dual of X. Then the
desired result holds by duality conjecture in [KS22, Theorem 1.6].

(2) By similar argument above, the fiber of categorical period map is contained in⋃
χ(v,v)=χ([i!Q∨

X ],[i!Q∨
X ])Mσ(Ku(X),v) and χ([i!Q∨

X ], [i!Q∨
X ]) = −4. It is not hard to see

that
⋃

χ(v,v)=χ([i!Q∨
X ],[i!Q∨

X ])Mσ(Ku(X),v) ∼= Mσ(Ku(Y ), 2[Il]), where Y is the cubic three-

fold such that Φ : Ku(X) ≃ Ku(Y ) is the Kuznetsov’s type equivalence in Conjecture 1.1
and [Il] is numerical class of ideal sheaf of a line l ⊂ Y . Indeed, Φ(i!Q∨

X′) ∈ Ku(Y ) is
actually a rank two instanton bundle on Y . Thus the fiber is contained in moduli space
M inst

Y (2, 0, 2) of instanton bundle of rank two on Y . On the other hand, each rank two
instanton bundle on Y determines an index one prime Fano threefold X of genus 8 such
that Ku(X) ≃ Ku(Y ) by [Kuz04a, Theorem 2.9]. Then the desired result holds.

□

Next, we describe the fiber of categorical period map PÃ for 1-nodal prime Fano threefolds,
using Theorem 7.11.

Proposition 8.2.

(1) The fiber of categorical period map

PÃ : MFMX6,Y2 → MTrCat

• over ÃX of a smooth a smooth Gushel-Mukai threefold X(which is nothing but Kuznetsov

component Ku(X)) is the disjoint union of two surfaces: Ỹ ≥2
A⊥

⋃
Ỹ ≥2
A .

• over ÃX , where X is a 1-nodal maximally non-factorial Gushel-Mukai threefold via
bridge construction from a quartic double solid Y is Hilbert scheme F (Y ) of lines on
Y

(2) The fiber of categorical period map

PÃ : MFMX8,Y3 → MTrCat

over ÃX where X is either a smooth index one prime Fano threefold of genus 8 or a 1-nodal
maximally non-factorial one via bridge construction from a cubic threefold Y is isomorphic
to the complement of the strictly semistable objects in moduli space Mσ(Ku(Y ), 2[Il]) of
semistable objects, which consists of rank two instanton bundles and rank two stable but
non locally free instanton sheaves.

(3) For d ≥ 4, the fiber of categorical period map

PÃ : MFMX2d+2,Yd

(1) → MTrCat

over ÃX with X to be a 1-nodal maximally non-factorial genus 2d + 2 Fano as above is
the locus of acyclic extension of a rank two charge d − 1 non locally free stable instanton
sheaves F0 of the form

0 → F0 → O⊕2
Y → OC((d− 2)p) → 0.
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Proof. (1) By definition, P−1

Ã
(Ku(X)) ∼= {X ′|Ku(X ′) ≃ Ku(X)}

⋃
{X ′′|Ku(Y ) ≃ Ku(X)},

where X ′ is a smooth Gushel-Mukai threefold and X ′′ is a 1-nodal maximally non factorial
Gushel-Mukai threefold via bridge from a quartic double solid Y . Note that Ku(X) is
never equivalent to Ku(Y ) by [Zha20] and [BP23]. Then the fiber is the disjoint union

of two surfaces: Ỹ ≥2
A⊥

⋃
Ỹ ≥2
A by Proposition 8.1. On the other hand, since X is 1-nodal

maximally non-factorial Gushel-Mukai threefold as above, then ÃX ≃ Ku(Y ), where Y
is the corresponding quartic double solid. Thus the fiber in question is just P−1

Ã
(Ku(Y ))

consists of all 1-nodal maximally non-factorial Gushel-Mukai threefold X ′ such that ÃX′ ∼=
ÃX ≃ Ku(Y ), which is parametrized by Ψ(RP i

!Q∨
X′) ∈ Ku(Y ), where Ψ : ÃX ≃ Ku(Y )n is

the equivalence in [KS23, Proposition 3.3, Remark 3.4], which is exactly ideal sheaf of a line
L ⊂ Y (By Theorem 7.6 and Lemma 7.10). Thus the fiber is contained inMσ(Ku(Y ), [Il]) ∼=
F (Y ). On the other direction, each point in F (Y ) gives a line on Y , producing the 1-nodal

maximally non-factorial Gushel-Mukai threefold X ′ such that ÃX′ ≃ Ku(Y ). Then the
desired result holds.

(2) As the image of PÃ of either 1-nodal maximally non-factorial or smooth prime Fano three-
fold of index one and genus 8 are both Kuznetsov component of some cubic threefold,
say Y , the fiber of categorical period map over Ku(Y ) is isomorphic to {X ′|Ku(X ′) ≃
Ku(Y )}

⋃
{X ′′|Ku(Y ′) ≃ Ku(Y )}, where X ′ is smooth prime Fano threefold of index one

and genus 8 and Y ′ is the cubic threefold associated to X ′′. Then by [JLZ22, Theorem 1.3],
those X ′ is parametrised by i!Q∨

X′ when Ku(X ′) is fixed and by Theorem 7.11, those X ′′

is parametrized by RP i
!Q∨

X′′ when ÃX′′ is fixed(up to equivalence of categories). Then the
fiber over Ku(Y ) is isomorphic to

{i!Q∨
X′}

⋃
{RP i

!Q∨
X′′} ⊂ Mσ(Ku(Y ), 2[Il])

, by [JLZ22, theorem 8.13], Theorem 7.6 and Theorem 9.5. Indeed the fiber is contained in
the complement of locus of strictly semistable objects in Mσ(Ku(Y ), 2[Il]). On the other
hand, each point in this locus is either an instanton bundle on Y or a non-locally free and
stable instanton sheaf. The previous one determines an index one prime Fano threefold of

genus 8 X ′ such that ÃX′ ≃ Ku(X ′) ≃ Ku(Y ) by [Kuz04b]; the latter one determines a 1-

nodal maximally non-factorial prime Fano threefold X of genus 8 such that ÃX ≃ Ku(Y ),
by [KS23, Setup 2.2]. Then, the desired result holds.

(3) The argument is very similar to the above, using Theorem 7.6, we omit the details.
□

Remark 8.3.

(1) In (1), The fiber of P
Ã
over one point is irreducible, while reducible over another point. It

would be very interesting to understand this phenomenon.

(2) Denote by P : MFMXg

≤1−mnf → A(whereA is the moduli space of 5-dimensional p.p.a.v.)the
”classical” period map such that X 7→ J(X). Then the fiber over any point strictly con-
tains the locus of instanton bundles and stable but non-locally free stable instanton sheaves,
whose complement is the locus of the second-type 1-nodal maximally non-factorial prime
Fano threefolds of genus 8 in No.7 in the table in [CKGS23]. It is reasonable to conjec-
ture that this locus corresponds to the strictly semistable objects in the moduli space

Mσ(Ku(Y ), 2[Il]), and the fiber of PÃ : MFMXg

≤1−mnf → MTrCat over ÃX should be the
whole Bridgeland moduli space.
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8.1. Naive extension of categorical period map. Instead of considering the categorical pe-
riod map P

Ã
, we could consider categorical period map PA associated with associated with the

component AX ⊂ Db(X ) with semi-orthogonal decomposition

Db(X ) = ⟨AX , f
∗Db(S)⊗Q∨

X , f
∗Db(S)⟩.

In this case, PA takes value in a not necessarily smooth and proper category. In this setting,
consider the categorical period map

PA : MFMXg

≤1−mnf → MTrCat.

Then our results on birational categorical Torelli Theorem 6.2 can be re-interpreted as follows.

Theorem 8.4.

(1) The fiber of PA over Ku(X) of a smooth ordinary Gushel-Mukai threefold is isomorphic to

the disjoint union of two surfaces: Ỹ ≥2
A⊥

⋃
Ỹ ≥2
A , while the fiber over Kuznetsov component of

the 1-nodal maximally non-factorial Gushel-Mukai threefold is contained in Hilbert scheme
F (Y ) of lines on a quartic double solid Y .

(2) The fiber PA over Ku(X) of a smooth index one prime Fano threefold of genus 8 is iso-
morphic to the locus of rank two instanton bundle on a cubic threefold, while the fiber
over that of a 1-nodal maximally non-factorial index one prime Fano threefold of genus 8
is contained in the complement of the locus of instanton bundle in the Bridgeland moduli
space Mσ(Ku(Y ), 2[Il]) on a cubic threefold Y .

In [KP18], the authors proposed the duality conjecture, stating that smooth Gushel-Mukai
varieties that are period partner or period dual admitting the equivalent Kuznetsov components,
which is proved in their later work [KP19]. Thus it is tempting to make the following conjecture
for 1-nodal maximally non-factorial prime Fano threefolds.

Conjecture 8.5. Let X and X ′ be 1-nodal maximally non-factorial prime Fano threefold of genus
g ≥ 6 such that J(X) ∼= J(X ′). Then Ku(X) ≃ Ku(X ′).

Remark 8.6. The Conjecture 8.5 implies the fiber of categorical period map in Theorem 8.4 over
the 1-nodal maximally non-factorial prime Fano threefold is not only contains in the Bridgeland
moduli space but also equal to it.

Our results in Section 7 and Section 8 support the following Conjecture.

Conjecture 8.7. Let

PÃ : MFMX2d+2

≤1mnf → MTrCat,

with d ≥ 3 be the categorical period map. Then for any point ÃX in its image, the fiber

P−1

Ã
(ÃX) ∼= Mσ(Ku(Yd), (d− 1)[Il]).

Remark 8.8. For d = 2, the conjecture above holds over the point ÃX for 1-nodal maximally
non-factorial Gushel-Mukai threefold X. For d = 4, it is not hard to show the acyclic extension of
the rank two instanton sheaf associated with a smooth twisted cubic is stable in the Kuznetsov
component.
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9. Appendix: Stability conditions on Kuznetsov components

In this section we introduce the definition of (weak) stability conditions on a general triangulated
category and a special triangulated category, known as the Kuznetsov component of del Pezzo
threefold of Picard rank one, which is given by [BLMS17, Proposition 5.1, Proposition 6.9]. Then
we recall several important properties of stability conditions on the Kuznetsov components and
describe several Bridgeland moduli spaces constructed from them.

9.1. Stability conditions on a general triangulated category.

Definition 9.1. A stability condition on a triangulated category T is a pair σ = (A, Z), where A
is the heart of a bounded t-structure on T and Z : Λ → C is a group homomorphism such that

(1) the composition Z ◦ v : K(A) ∼= K(T ) → C is a stability function on A, i.e. for any E ∈ A,
we have ImZ(v(E)) ≥ 0 and if ImZ(v(E)) = 0, ReZ(v(E)) < 0. From now on, we write
Z(E) rather than Z(v(E)).

For any object E ∈ A, we define the slope function µσ(−) as

µσ(E) :=

{
−ReZ(E)

ImZ(E) , ImZ(E) > 0

+∞, else.

An object 0 ̸= E ∈ A is called σ-(semi)stable if for any proper subobject F ⊂ E, we have
µσ(F )(≤)µσ(E).

(2) Any object E ∈ A has a Harder–Narasimhan filtration in terms of σ-semistability defined
above.

(3) There exists a quadratic form Q on Λ⊗R such that Q|kerZ is negative definite and Q(E) ≥ 0
for all σ-semistable objects E ∈ A. This is known as the support property.

The phase of a σ-semistable object E ∈ A is defined as

ϕσ(E) :=
1

π
arg(Z(E)) ∈ (0, 1].

For n ∈ Z, we set ϕσ(E[n]) := ϕσ(E) + n.
A slicing Pσ of T with respect to the stability condition σ consists of full additive subcategories

Pσ(ϕ) ⊂ T for each ϕ ∈ R such that the subcategory Pσ(ϕ) contains the zero object and all
σ-semistable objects whose phase is ϕ.

For any interval I ⊂ R, we denote by Pσ(I) the category given by the extension closure of
{Pσ(ϕ)}ϕ∈I . We will use both notations σ = (A, Z) and σ = (Pσ, Z) for a stability condition σ
with heart A = Pσ((0, 1]).

Definition 9.2. Let T be a triangulated category and Φ be an auto-equivalence of T . We say a

stability condition σ on T is Φ-invariant for an element g̃ ∈ G̃L
+
(2,R). We say σ is Serre-invariant

if it is ST -invariant, where ST is the Serre functor of T .

9.2. Stability conditions on Kuznetsov components of del Pezzo threefolds. In [BLMS17],
the authors provide a way to construct stability conditions on Ku(Y ) of a del Pezzo threefold Y
of Picard rank one from weak stability conditions on Db(Y ).

Theorem 9.3 ([BLMS17]). Let Y be a smooth del Pezzo threefold of Picard rank one. Then there
exists a family of stability conditions on Ku(Y ).

When Y is a del Pezzo threefold of degree d ≥ 2, it is proved in [PR21] that stability conditions
on Ku(Y ) constructed in [BLMS17] are Serre-invariant. Furthermore, they all belong to the same

G̃L
+
(2,R)-orbit.
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Theorem 9.4 ([JLLZ21a, FP21]). Let Y be a del Pezzo threefold of degree d ≥ 2, then all Serre-

invariant stability conditions on Ku(Y ) are contained in the same G̃L
+
(2,R)-orbit.

9.3. Bridgeland moduli space of stable objects of character d[Il]. Denote by Il the ideal
sheaf of a line l ⊂ Y on del Pezzo threefold Y , it is clear that Il ∈ Ku(Y ) and its character
[Il] = v = 1 − L in numerical Grothendieck group N (Ku(Y )). In this section we recall the
description of Bridgeland moduli space Mσ(Ku(Yd), (d−1)v) of semistable objects of class (d−1)v
in Kuznetsov component Ku(Yd) of del Pezzo threefold of degree d− 1, for d ≥ 2.

Theorem 9.5. [PY21, Theorem 1.1], [LZ21, Theorem 1.5(1)] Let Y be a del Pezzo threefold of
degree d and σ be any Serre-invariant stability condition on Ku(Y ). Then

(1) Mss
σ (Ku(Y ),v) ∼= F (Y ), if d ≥ 2, where F (Y ) is the Fano surface of lines. Every σ-stable

object of class v is of the form Il[2k] for some k ∈ Z.
(2) Mss

σ (Ku(Y ), 2v) ∼= M inst
Y (2, 0, 2) if d = 3. Moreover, E ∈ Mss

σ (Ku(Y ), 2v) if and only if
E is one of following three forms:

• instanton bundle.
• stable instanton sheaf but not locally free and there is a short exact sequence

0 → E → O⊕2
Y → OC(1) → 0,

where C is a smooth conic.
• strictly semistable sheaf and there is a short exact sequence

0 → Il → E → Il′ → 0,

where l, l′ are lines on Y .
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