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Let Yd be a del Pezzo threefold of Picard rank one and degree d ≥ 2. In this paper, we 
apply two different viewpoints to study Yd via a particular admissible subcategory 
of its bounded derived category, called the Kuznetsov component:

(i) Brill–Noether reconstruction. We show that Yd can be uniquely recovered as a 
Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.

(ii) Exact equivalences. We prove that up to composing with an explicit auto-
equivalence, any Fourier–Mukai type equivalence of Kuznetsov components 
of two del Pezzo threefolds of degree 2 ≤ d ≤ 4 can be lifted to an 
equivalence of their bounded derived categories. As a result, we obtain a 
complete description of the group of Fourier–Mukai type auto-equivalences of 
the Kuznetsov component of Yd.

In an appendix, we classify instanton sheaves on quartic double solids, generalizing 
a result of Druel.
© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and 

data mining, AI training, and similar technologies.

r é s u m é

Soit Yd un threefold de del Pezzo de rang Picard un et de degré d ≥ 2. Dans 
cet article, nous appliquons deux points de vue différents pour étudier Yd via une 
sous-catégorie admissible particulière de sa catégorie dérivée bornée, appelée la 
composante de Kuznetsov :

(i) Reconstruction de Brill–Noether. Nous montrons que Yd peut être récupéré de 
manière unique comme un lieu de Brill-Noether d’objets stables de Bridgeland 
dans sa composante de Kuznetsov.

(ii) Equivalences exactes. Nous prouvons qu’à composition avec une auto-équi-
valence explicite, toute équivalence de type Fourier-Mukai de composantes de 
Kuznetsov de deux threefold de del Pezzo de degré 2 ≤ d ≤ 4 peut être élevée 
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à une équivalence de leurs catégories dérivées bornées. Nous obtenons ainsi une 
description complète du groupe des auto-équivalences de type Fourier–Mukai 
de la composante de Kuznetsov de Yd.

Dans une annexe, nous classons les faisceaux instanton sur les solides doubles 
quartiques, en généralisant un résultat de Druel.
© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and 

data mining, AI training, and similar technologies.
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1. Introduction

Let Y be a del Pezzo threefold of Picard rank one, which is an index two prime Fano threefold. By [16], it 
belongs to one of the five families of threefolds classified by their degree 1 ≤ d ≤ 5, see Section 2. By a series 
of papers of Bondal–Orlov and Kuznetsov, the bounded derived category Db(Y ) of these Fano threefolds 
admit a semiorthogonal decomposition

Db(Y ) = 〈Ku(Y ),OY ,OY (1)〉 = 〈Ku(Y ),QY ,OY 〉,

where QY
∼= LOY

OY (1)[−1] is a rank d + 1 vector bundle for d ≥ 2. This paper aims to employ two 
different viewpoints to extract the critical information of Y from its admissible subcategory Ku(Y ), called 
the Kuznetsov component. Before that, we give the following theorem which is crucial in both directions. 
Recall that the rotation functor O is an auto-equivalence of Ku(Y ) sending E ∈ Ku(Y ) to LOY

(E⊗OY (1)). 
We denote by i : Ku(Y ) ↪→ Db(Y ) the inclusion functor with the right and left adjoints i! and i∗, respectively.

In the following, we consider the object i!QY ∈ Ku(Y ), which is the gluing object of the semiorthogo-
nal decomposition in the sense of [20]. As explained in [20, Section 2.2], the gluing object together with 
Ku(Y ) encode the information of O⊥

Y . We first show that this gluing object i!QY is preserved by any exact 
equivalence between Kuznetsov components of Y and Y ′, up to some natural auto-equivalences.

Theorem 1.1 (Theorem 7.1). Let Y and Y ′ be del Pezzo threefolds of Picard rank one and degree 2 ≤ d ≤ 4, 
and Φ: Ku(Y ) �−→ Ku(Y ′) be an exact equivalence.

(i) If 2 ≤ d ≤ 3, there exist a unique pair of integers m1, m2 ∈ Z with 0 ≤ m1 ≤ 3 when d = 2 and 
0 ≤ m1 ≤ 5 when d = 3, so that

Φ(i!QY ) ∼= Om1(i′!QY ′)[m2].

(ii) If d = 4, there exists a unique pair of integers m1, m2 and a unique auto-equivalence TL0 ∈
Aut0(Ku(Y ′)) (see Section 7.3 for definition) so that
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Φ(i!QY ) ∼= Om1 ◦ TL0(i′
!QY ′)[m2].

Here i′ : Ku(Y ′) ↪→ Db(Y ′) is the inclusion functor.

To prove degree 2 ≤ d ≤ 3 cases, we identify the object i!QY via the uniqueness property1 of it. Up 
to rotations and shifts, we can assume any exact equivalence Φ: Ku(Y ) �−→ Ku(Y ′) acts trivially on the 
numerical Grothendieck group. Take a stable object E in Ku(Y ) of the same class as i!QY , then we show 
RHom(i∗ Op, E) is a two-term complex for all points p ∈ Y if and only if E ∼= i!QY . Combining it with 
analysis of the moduli space of stable objects in Ku(Y ) of class [i∗ Op] gives Theorem 1.1. For d = 4 case, 
we use the property of second Raynaud bundles.

Then we discuss our two perspectives on categorical Torelli theorems.

I. Brill–Noether reconstruction. In [2,1], authors apply stability conditions on Ku(Y ) for degree 2 ≤ d ≤ 3
to show that one can uniquely recover Y as a subscheme of a moduli space of stable objects in Ku(Y ). 
The following theorem shows that we can describe this subscheme explicitly as a Brill–Noether locus. This 
generalizes the classical picture for degree d = 4, as discussed in Section 6.1.

By [38], [13] and [18], there is a unique Serre-invariant stability condition on Ku(Y ) up to the action 

of G̃L
+
2 (R) for d ≥ 2, see Section 2. Denote by Mσ(Ku(Y ), v) the moduli space2 of stable objects of a 

numerical class v ∈ N (Ku(Y )) with respect to a stability condition σ on the Kuznetsov component Ku(Y ).

Theorem 1.2 (Theorem 6.2). Let Y be a del Pezzo threefold of Picard rank one and degree d ≥ 2, and let σ
be a Serre-invariant stability condition on Ku(Y ). Then Y is isomorphic to the Brill–Noether locus3

BN Y := {F ∈ Mσ(Ku(Y ), [i∗ Op]) : ∃k ∈ Z such that dimC Hom(F [k], i!QY ) ≥ d + 1},

where Op is the skyscraper sheaf supported at a point p ∈ Y .

By [38], Serre-invariant stability conditions on Ku(Y ) for degree d ≥ 2 are O-invariant as well. Thus 
combining Theorem 1.2 and 1.1 gives a new proof for Categorical Torelli Theorem.

Corollary 1.3 (Corollary 7.11). Let Y and Y ′ be del Pezzo threefolds of Picard rank one and degree 2 ≤ d ≤ 4
such that Ku(Y ) � Ku(Y ′), then Y ∼= Y ′.

II. Exact equivalences. The second viewpoint is to combine the categorical techniques developed in [29]
with geometric analysis of stable objects in Ku(Y ) to show that any Fourier–Mukai type exact equivalence 
of Kuznetsov components of two del Pezzo threefolds of degree 2 ≤ d ≤ 4 can be lifted to an equivalence of 
their bounded derived categories.

Theorem 1.4 (Theorem 8.2). Let Y and Y ′ be del Pezzo threefolds of Picard rank one and degree 2 ≤ d ≤ 4, 
and let Φ: Ku(Y ) → Ku(Y ′) be an exact equivalence of Fourier–Mukai type such that Φ(i!QY ) = i′ !QY ′ . 
Then Φ = f∗|Ku(Y ) for a unique isomorphism f : Y → Y ′.

1 The object i!QY can be viewed as a generalization of the classical notion of second Rayanud bundle over a genus two curve, 
which is unique up to twisting a line bundle over the curve.
2 Let σ = (Z, A), then up to a shift we may assume Im[Z(v)] ≥ 0, then we only consider stable objects in the heart A to define 

the moduli space Mσ(Ku(Y ), v).
3 Note that for any F ∈ Mσ(Ku(Y ), dv − w), we prove RHom(F, i!QY ) = Cδ[k + 1] ⊕ Cd+δ[k] where δ is either zero or one. 

Hence there exists at most one k ∈ Z so that dimC Hom(F [k], i!QY ) ≥ d + 1.
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Clearly, combining Theorem 1.1 with Theorem 1.4 provides an alternative proof of Categorical Torelli 
theorem for del Pezzo threefold of degree 2 ≤ d ≤ 4. Furthermore, we obtain a complete description of the 
group AutFM(Ku(Y )) of exact auto-equivalences of Ku(Y ) of Fourier–Mukai type. For a group G and a 
subset S ⊂ G, we denote by 〈S〉 the subgroup of G generated by S.

Corollary 1.5 (Corollary 8.4). If Y is a del Pezzo threefold of Picard rank one and degree d. Then we have

(1) AutFM(Ku(Y )) = 〈Aut(Y ), O, [1]〉 when 2 ≤ d ≤ 3, and
(2) AutFM(Ku(Y )) = 〈Aut(Y ), Aut0(Ku(Y )), O, [1]〉 when d = 4.

Here the subgroup Aut0(Ku(Y )) is defined in Section 7.3.

We may write elements of AutFM(Ku(Y )) in a more explicit way, see Corollary 8.4. Note that by [30, 
Theorem 1.3], any exact equivalence between Kuznetsov components of quartic double solids is of Fourier–
Mukai type. The same also holds for del Pezzo threefolds of degree d = 4 as Ku(Y ) � Db(C) for a smooth 
curve C. Thus in these two cases, AutFM(Ku(Y )) = Aut(Ku(Y )).

Related work. Here is the list of relevant results for del Pezzo threefolds Yd of degree d:

d = 2. In [10] and [1], the categorical Torelli theorem (Corollary 1.3) has been proved for generic quartic 
double solids. It has been proved for non-generic cases in [7] via Hodge theory for K3 categories. 
In Theorem 1.2, we give an explicit expression for Y as a Brill–Noether locus of stable objects in 
Ku(Y2), and so provide a new proof for the categorical Torelli theorem.

d = 3. In [5] and [38], the categorical Torelli theorem has been proved for cubic threefolds by reducing it to 
classical Torelli theorem. In [28], the author computes the group of auto-equivalences of Kuznetsov 
components of cubic threefolds of Fourier–Mukai type via a completely different method and provides 
a new proof of categorical Torelli theorem for cubic threefold by constructing a Hodge isometry 
between cubic threefolds. In [2], the cubic threefold Y3 has been described geometrically as a sub-
locus of a moduli space of stable objects in Ku(Y3). Theorem 1.2 gives a point-wise description of it 
as a Brill–Noether locus.

d = 4. We know Y4 is the intersection of two quadrics in P 5, and by [35], it can be reconstructed as the 
moduli space M of stable vector bundles of rank two with fixed determinant of an odd degree over 
the associated genus two curve C2. We have Ku(Y4) � Db(C2). As discussed in Section 6.1, our 
categorical Brill–Noether locus in Theorem 1.2 matches with the classical moduli space M .

Other than del Pezzo threefolds, various versions of categorical Torelli theorems are also obtained, see [37]
for recent development. In particular, in [19] the authors provide a Brill–Noether reconstruction for index 
one prime Fano threefolds, and as a result, the refined categorical Torelli theorem is proved.

In [11,39,40,32], a classification of rank two instanton sheaves and the corresponding moduli space in the 
Kuznetsov component have been discussed for del Pezzo threefolds of degree d ≥ 3. In Appendix A, we 
discuss degree d = 2 case.

Organization of the article. In Section 2, we recall the basic definitions and properties of (weak) stability 
conditions on del Pezzo threefolds of Picard rank one Yd of degree d and their Kuznetsov components 
Ku(Yd). In particular, we introduce Serre-invariant stability conditions on Ku(Yd) and describe Ku(Yd)
for each d ≥ 2. In Section 3, we collect results of general wall-crossing for del Pezzo threefolds which 
will be used in later sections. In Section 4, we describe the moduli space of σ-stable objects of the same 
class as twice of ideal sheaves of lines in the Kuznetsov component of a quartic double solid. In Section 5
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we classify σ-stable objects of the same class as three times of the class of ideal sheaves of lines in the 
Kuznetsov component of a cubic threefold. In Section 6 we prove Theorem 1.1. In Section 7 we provide a 
Brill–Noether reconstruction for a del Pezzo threefold of Picard rank one Yd with respect to Ku(Yd) and 
its gluing object i!QYd

, proving Theorem 1.2. Then we prove categorical Torelli theorem 1.3. In Section 8
we prove Corollary 1.5. In Appendix A we classify semistable sheaves of rank two, c1 = 0, c2 = 2, c3 = 0 on 
quartic double solids.

Acknowledgments. We would like to thank Arend Bayer, Daniele Faenzi, Sasha Kuznetsov, Chunyi Li, Ziqi 
Liu, Pieter Moree, Alex Perry, Franco Rota, Richard Thomas, and Xiaolei Zhao for useful conversations and 
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tially supported by GSSCU2021092. The second author would like to thank Institute for Advanced Study in 
Mathematics at Zhejiang University for financial support and wonderful research environment. Part of the 
work was finished when the third author is visiting Max-Planck institute for mathematics, IASM–Zhejiang 
University, Sichuan University and MCM–China Academy of Science. He is grateful for excellent working 
condition and hospitality.

2. Background: (weak) Bridgeland stability conditions

In this section, we briefly review the notion of (weak) stability condition on Db(Y ) and Ku(Y ) when 
Y := Yd is a del Pezzo threefold of Picard rank one and degree d. By [16], every del Pezzo threefold of 
Picard rank one belongs to the following five families, indexed by their degree d := H3 ∈ {1, 2, 3, 4, 5} :

— Y5 = P 6 ∩ Gr(2, 5) is a codimension 3 linear section of Grassmannian Gr(2, 5).
— Y4 = Q ∩Q′ is intersection of two quadric hypersurfaces in P 5.
— Y3 ⊂ P 4 is cubic threefold.
— Y2 is a quartic double solid, i.e. a double cover of P 3 with smooth branch divisor R ∈ | OP3(4)|.
— Y1 is a degree 6 hypersurface of weighted projective space P (1, 1, 1, 2, 3).

2.1. Weak stability conditions on Db(Y )

For any b ∈ R, consider the full subcategory of complexes

Cohb(Y ) =
{
E−1 d−→ E0 : μ+

H(ker d) ≤ b , μ−
H(cokerd) > b

}
⊂ Db(Y ) (1)

Then Cohb(Y ) is the heart of a bounded t-structure on Db(Y ) by [8, Lemma 6.1]. For any pair (b, w) ∈ R2, 
we define a group homomorphism Zb,w : K(Y ) → C by

Zb,w(E) := −ch2(E)H + wch0(E)H3 + b(H2ch1(E) − bH3ch0(E)) + i

(
H2ch1(E) − bH3ch0(E)

)
. (2)

In [27], the author defined an open region Ũ ⊂ R2 as the set of points (b, w) ∈ R2 above the curve 
w = 1

2b
2 − 3

8d and above tangent lines of the curve w = 1
2b

2 at (k, k
2

2 ) for all k ∈ Z.
In Figs. 1 and 2, we plot the (b, w)-plane simultaneously with the image of the projection map

Π: K(Y ) \
{
E : ch0(E) = 0

}
−→ R2,

E �−→
(

ch1(E).H2

3 ,
ch2(E).H

3

)
.
ch0(E)H ch0(E)H
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b, ch1.H
2

ch0H3

w = b2

2

w, ch2.H
ch0H3

0.5−0.5

Ũ

Π(OY (H))Π(OY (−H))

Fig. 1. The space Ũ when d ≤ 3.

b, ch1.H
2

ch0H3

w = b2

2 − 3
8d

w, ch2.H
ch0H3

√
3
4d

−1 +
√

3
4d

Ũ
Π(OY (H))Π(OY (−H))

Fig. 2. The space Ũ when d = 4, 5.

Proposition 2.1 ([6, Proposition B.2]). There is a continuous family of weak stability conditions on Db(Y )
parametrized by Ũ ⊂ R2, given by4

(b, w) ∈ Ũ �→ (Cohb(Y ), Zb,w).

We now expand upon the above statements. The function −Re[Zb,w(E)]
Im[Zb,w(E)] for objects E ∈ Cohb(Y ) gives 

the same ordering as

νb,w(E) =

⎧⎨
⎩

ch2(E).H−wch0(E)H3

chbH
1 (E).H2 if chbH

1 (E).H2 �= 0,

+∞ if chbH
1 (E).H2 = 0,

(3)

where chbH(E) := exp(−bH).ch(E).

Definition 2.2. Fix a pair (b, w) ∈ Ũ . We say E ∈ Db(Y ) is νb,w-(semi)stable if and only if

4 We replaced the pair (α, β) with (w = 1
2α

2 + 1
2β

2, b = β).
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— E[k] ∈ Cohb(Y ) for some k ∈ Z, and
— νb,w(F ) (≤) νb,w

(
E[k]/F

)
for all non-trivial subobjects F ↪→ E[k] in Cohb(Y ).

Here (≤) denotes < for stability and ≤ for semistability.

The image Π(E) of νb,w-semistable objects E with ch0(E) �= 0 is outside Ũ by [27, Proposition 3.2], so 
in particular,

ΔH(E) =
(
ch1(E).H2)2 − 2(ch0(E)H3)(ch2(E).H) ≥ 0. (4)

Proposition 2.3 (Wall and chamber structure). Fix v ∈ K(Y ) with ΔH(v) ≥ 0 and ch≤2(v) �= 0. There exists 
a set of lines {�i}i∈I in R2 such that the segments �i ∩ Ũ (called “walls of instability”) are locally finite and 
satisfy

(a) If ch0(v) �= 0 then all lines �i pass through Π(v).
(b) If ch0(v) = 0 then all lines �i are parallel of slope ch2(v).H

ch1(v).H2 .
(c) The νb,w-(semi)stability of any E ∈ Db(Y ) of class v is unchanged as (b, w) varies within any connected 

component (called a “chamber”) of Ũ \
⋃

i∈I �i.
(d) For any wall �i ∩ Ũ , there is an integer ki and a map f : F → E[ki] in Db(Y ) such that

— for any (b, w) ∈ �i ∩ Ũ , the objects E[ki], F lie in the heart Cohb(X),
— E is νb,w-semistable of class v with νb,w(E) = νb,w(F ) = slope (�i) constant on the wall �i ∩ Ũ , and
— f is an injection F ↪→ E[ki] in Cohb(Y ) which strictly destabilizes E[ki] for (b, w) in one of the two 

chambers adjacent to the wall �i. �

2.2. Kuznetsov component

The Kuznetsov component Ku(Y ) is the right orthogonal complement of the exceptional collection 
OY , OY (1) in Db(Y ) sitting in the semiorthogonal decomposition

Db(Y ) = 〈Ku(Y ),OY ,OY (H)〉 = 〈Ku(Y ),QY ,OY 〉,

where QY := LOY
OY (1)[−1] is a rank d + 1 vector bundle for d ≥ 2 (see Section 3.2 for more details). 

We can identify the numerical Grothendieck group N (Ku(Y )) of Ku(Y ) with the image of Chern character 
map

ch: K(Ku(Y )) → H∗(X,Q).

It is a rank 2 lattice spanned by the classes

v =
(

1, 0, −1
d
H2, 0

)
and w =

(
0, H, −1

2H
2,

(
1
6 − 1

d

)
H3

)
.

Note that v is the Chern character of ideal sheaves of lines on Y . With respect to this basis, the Euler form 
on N (Ku(Y )) is represented by the matrix (

−1 −1
1 − d −d

)
. (5)

Consider any admissible subcategory i : C ↪→ Db(Y ). It has left and right adjoints i∗ and i!. Similarly, 
the embedding l : C⊥ ↪→ Db(Y ) and r : ⊥C ↪→ Db(Y ) has left and right adjoints. We know that any object 
E ∈ Db(Y ) lies in the exact triangles
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r ◦ r!(E) → E → i ◦ i∗(E) , i ◦ i!(E) → E → l ◦ l∗(E).

We define the right mutation along C to be the functor

RC := r ◦ r! : Db(Y ) → r(⊥C)

and the left mutation along C to be

LC := l ◦ l∗ : Db(Y ) → l(C⊥).

By [22, Proposition 3.8], we know LC |r(⊥C) and RC |l(C⊥) are mutually inverse equivalence between the two 

orthogonal ⊥C → C⊥ and C⊥ → ⊥C. Moreover,

(LC)|r(⊥C) = SDb(Y ) ◦ r ◦ S−1
⊥C ◦ r∗ , (RC)|l(C⊥) = S−1

Db(Y ) ◦ l ◦ SC⊥ ◦ l∗.

Here ST denotes the Serre functor of a triangulated category T (if it exists).
Let E ∈ Db(Y ) be an exceptional object. Then the triangulated subcategory 〈E〉 generated by E is an 

admissible subcategory. The embedding functor i : 〈E〉 → T has the left and right adjoints

i∗ = E ⊗ RHom(F,E)∗, i!(F ) = E ⊗ RHom(E,F ).

We will abuse notations and write RE and LE for the corresponding right and left mutations, respectively.
We finish this section by defining the rotation functor. [22, Lemma 4.1, Lemma 4.2] implies that the 

functor

O : Db(Y ) → Db(Y ), O(−) = LOY
(−⊗OY (H)) (6)

is an auto-equivalence of Ku(Y ), called rotation functor. By [38, Remark 5.6], we have

S−1
Ku(Y ) = O2[−3].

The rotation functor O induces an auto-isometry of the numerical Grothendieck group N (Ku(Yd)) for each 
d. In particular for d = 3, we have

v −2v + w v − w v.O O O

And for d = 2, we have

v −v + w −v.O O

2.3. Bridgeland stability conditions on Ku(Y )

For any pair (b, w) ∈ Ũ , consider the tilted heart Coh0
b,w(Y ) = 〈Fb,w[1], Tb,w〉 where Fb,w (Tb,w) is 

the subcategory of objects in Cohb(X) with ν+
b,w ≤ b (ν−b,w > b). By [3, Proposition 2.14], the pair 

σ0
b,w :=

(
Coh0

b,w(X), Z0
b,w

)
is a weak stability condition on Db(Y ), where Z0

b,w := −iZb,w. We denote 
the corresponding slope function by

μ0
b,w(−) := −

Re[Z0
b,w(−)]

Im[Z0
b,w(−)] .

Let Coh0(X) ⊂ Coh(X) be the full subcategory consisting of zero-dimensional sheaves.
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Lemma 2.4 ([13, Proposition 4.1]). Any σ0
b,w-(semi)stable object E ∈ Coh0

b,w(Y ) is νb,w-(semi)stable if it 
does not lie in an exact triangle of the form

F [1] → E → T

where F ∈ Fb,w is νb,w-(semi)stable and T ∈ Coh0(X). Conversely, take a νb,w-(semi)stable object E such 
that either

(1) E ∈ Tb,w and Hom(Coh0(X), E) = 0, or
(2) E ∈ Fb,w and Hom(Coh0(X), E[1]) = 0.

Then E is σ0
b,w-(semi)stable.

By restricting weak stability conditions σ0
b,w to the Kuznetsov component Ku(Y ), we obtain stability 

conditions on it.

Theorem 2.5 ([3, Theorem 6.8]). For every pair (b, w) in the subset

V :=
{

(b, w) ∈ Ũ : − 1
2 ≤ b < 0, w < b2 or − 1 < b < −1

2 , w ≤ b2 + b + 1
2

}
⊂ Ũ ,

the pair σ(b, w) = (A(b, w), Z(b, w)) is a Bridgeland stability condition on Ku(Yd) where

A(b, w) := Coh0
b,w(Yd) ∩ Ku(Yd) and Z(b, w) := Z0

b,w|Ku(Yd).

Proof. Applying the same argument as in the proof of [3, Theorem 6.8] shows that σ(b, w) is a Bridgeland 
stability condition on Ku(Yd) if −1 < b < 0 and

νb,w(OYd
(−2H)[1]) ≤ νb,w(OYd

(−H)[1]) ≤ b < νb,w(OYd
) ≤ νb,w(OYd

(H)). �

On the stability manifold which we denote by Stab(Ku(Y )) we have:

(1) a right action of the universal covering space G̃L
+
2 (R) of GL+

2 (R): for a stability condition σ = (P, Z) ∈
Stab(Ku(Y )) and g̃ = (g, M) ∈ G̃L

+
2 (R), where g : R → R is an increasing function such that g(φ +1) =

g(φ) +1 and M ∈ GL+
2 (R), we define σ · g̃ to be the stability condition σ′ = (P ′, Z ′) with Z ′ = M−1 ◦Z

and P ′(φ) = P(g(φ)) (see [9, Lemma 8.2]).
(2) a left action of the group of exact auto-equivalences Aut(Ku(Y )) of Ku(Y ): for Φ ∈ Aut(Ku(Y )) and 

σ ∈ Stab(Ku(Y )), we define Φ · σ = (Φ(P), Z ◦ Φ−1
∗ ), where Φ∗ is the automorphism of K(Ku(Y ))

induced by Φ.

Remark 2.6. Note that all stability conditions σ(b, w) for (b, w) ∈ V lie in the same orbit with respect to 

the action of G̃L
+
2 (R) by [38, Proposition 3.5].5 Hence if E ∈ Ku(Yd) is σ(b, w)-(semi)stable with respect to 

some (b, w) ∈ V , then it is σ(b, w)-(semi)stable with respect to any (b, w) ∈ V .

We now give a case-by-case investigation of the category Ku(Yd) when d ≥ 2:

5 This is proved for V ∩ U , but the same proof is valid for V .
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d = 5. Y5 is a linear section of codimension 3 of Gr(2, 5). Let U be the restriction of the tautological rank 2
subbundle from Gr(2, 5) to Y5, and let U⊥ = ker(OY ⊗ Hom(OY , U∗) → U∗), then [24, Lemma 4.1]
gives

Ku(Y5) = 〈U , U⊥〉.

d = 4. Y4 is an intersection of 2 quadrics in P 5. By [24, Theorem 5.1], there exists a curve C of genus 2
such that we have an equivalence Ku(Y4) ∼= Db(C2). Hence, there is a unique Bridgeland stability 

condition on Ku(Y4) up to the action of G̃L
+
2 (R) by [33].

d = 3. Y3 is a cubic 3-fold, and Ku(Y3) is a fractional Calabi–Yau category of dimension 53 , i.e. S3
Ku(Y3) = [5]. 

Note that by [22, Lemma 4.1, Lemma 4.2], we have S−1
Ku(Y3) = O2[−3]. In this case, we only consider 

Serre-invariant stability conditions on Ku(Y3), i.e. those σ ∈ Stab(Ku(Y3)) so that SKu(Y3).σ = σ.g̃ for 
some g̃ ∈ G̃L

+
2 (R). By [38], all stability conditions constructed in Theorem 2.5 are Serre-invariant. 

And it is proved in [13, Sections 4 & 5] and [18, Theorem 4.25] that all Serre-invariant stability 

conditions on Ku(Y3) lie in the same orbit with respect to the action of G̃L
+
2 (R).

d = 2. Y2 is a double cover of P 3 ramified in a quartic surface, called a quartic double solid. By [25, 
Corollary 4.6], the Serre functor of Ku(Y2) is SKu(Y3) = τ [2] where τ is the auto-equivalence of 
Ku(Y2) induced by the involution τ of the double covering. As the involution τ preserves Coh(X)
and Chern characters, the stability conditions σ(b, w) constructed in Theorem 2.5 are Serre-invariant, 
see [38, Lemma 6.1]. Moreover, [13, Theorem 3.2 & Remark 3.8] and [18, Theorem 4.25] implies that 
all Serre-invariant stability conditions on Ku(Y2) lie in the same orbit with respect to action of 
G̃L

+
2 (R).

3. Del Pezzo threefolds of Picard rank one

In this section, we gather all results which are valid for del Pezzo threefold Y of Picard rank one and 
degree d. By [23], for any E ∈ Db(Y ), we know

χ(OY , E) = ch0(E) + H2ch1(E)d + 3
3d + Hch2(E) + ch3(E).

3.1. Instanton bundles and their acyclic extensions

An instanton of charge n ≥ 2 on Y is a Gieseker-stable vector bundle E with ch≤2(E) = (2, 0, −nH2

d )
satisfying instanton condition H1(Y, E(−1)) = 0. By [24, Lemma 3.5], for each instanton bundle E, we have 
h1(E) = n − 2, thus there exists a unique short exact sequence

0 → E → Ẽ → On−2
Y → 0

such that Ẽ is acyclic, i.e. Hi(Y, Ẽ) = 0 for any i. Note that Ẽ = LOY
E and is of Chern character

nv =
(
n, 0, −n

H2

d
, 0

)
.

Moreover, it is νb,w-semistable for b < 0 and w � 0.
Let �d be the line passing through Π(nv) = (0, − 1

d) and Π(OY (−H)) = (−1, 12 ), so it is of equation 
w = −d+2

2d b − 1
d . If d = 2, then �d coincides with the boundary of Ũ , and if d ≥ 3, then it intersects ∂Ũ at 

two points with b-values bd1 < bd2 so that
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bd1 ≤ −1 and − 2
d + 2 = bd2. (7)

Lemma 3.1. Take a class α ∈ K(X) with ch≤2(α) = n 
(
1, 0,−H2

d

)
such that n ≤ d +1. Then there is no wall 

for class α above �d. In particular, an object E ∈ Cohb(Y ) of Chern character α which is νb,w-semistable 
for b < 0 and w � 0 satisfies RHom(OY , E) = Hom(OY , E[1])[−1] and hence ch3(E) ≤ 0.

Proof. Suppose for a contradiction that there is such a wall � for class α above �d with the destabilizing
sequence E1 → E → E2. Let b1 < b2 be the intersection points of � with the boundary ∂Ũ . Then for i = 1, 2,

μ+
H(H−1(Ei)) ≤ b1 and b2 ≤ μ−

H(H0(Ei)).

Let (r, cH) = ch≤1(H−1(E1)) + ch≤1(H−1(E2)), then (r + n, cH) = ch≤1(H0(E1)) + ch≤1(H0(E2)), so

b2(r + n) ≤ c ≤ b1r. (8)

Note that if rk(H−1(Ei)) = 0, then H−1(Ei) = 0. If d = 2, then �d lies on the boundary ∂Ũ , so we have 
b1 < −3

2 and −1
2 < b2, so (8) gives −1

2 (r + n) < c < −3
2r which has no solution for n ≤ 3. If d ≥ 3, then 

combining (7) and (8) gives − 2
d+2 (r + n) < c < −r which is not possible for k ≤ d + 1.

For the second claim, we know E is semistable at the large volume limit, so Hom(OY , E) = 0. Also the 
first part implies that E is νb,w-semistable for all (b, w) ∈ Ũ over �d. Since the line segment connecting 
Π(E) and Π(OY (−2)) is above �d, we have Hom(E, OY (−2H)[1]) = Hom(OY , E[2]) = 0. And we know 
that Hom(OY , E[i]) = Hom(E, OY (−2)[3 − i]) = 0 for i �= 1. Thus χ(E) = − hom(OY , E[1]) = ch3(E) ≤ 0, 
which gives ch3(E) ≤ 0. �

As a result of the lemma below, we may identify Gieseker-stable sheaves with the large volume limit 
stable ones.

Lemma 3.2. Let E be an object of class ch(E) = nv where 1 ≤ n ≤ d + 2. Then E is νb,w-(semi)stable 
for b < 0 and w � 0 (or equivalently, 2-Gieseker-(semi)stable) if and only if E is a Gieseker-(semi)stable 
sheaf.

Proof. By [2, Proposition 4.8], the 2-Gieseker-(semi)stability for E coincides with νb,w-(semi)stability for 
b < 0 and w � 0. Then in the following we will show 2-Gieseker-(semi)stability for E coincides with 
Gieseker-(semi)stability

It is clear that if E is 2-Gieseker-stable, then E is Gieseker-stable. Conversely, if E is Gieseker-stable but 
strictly 2-Gieseker-semistable, then we can find an exact sequence 0 → E1 → E → E2 → 0 such that Ei are 
2-Gieseker-semistable of classes ch(Ei) = (ki, 0, ki

d H
2, mi), where 1 ≤ ki ≤ n − 1 ≤ d + 1 and mi ∈ Z≤0. By 

the stability of Ei, we have mi ≤ 0 for any i from Lemma 3.1. Since m1 + m2 = 0, we have ch(Ei) = kiv
and contradicts the Gieseker-stability of E.

And it is clear that if E is Gieseker-semistable, then E is 2-Gieseker-semistable. Now assume that E is 
2-Gieseker-semistable but not Gieseker-semistable. Then the maximal destabilizing subsheaf E1 of E with 
respect to Gieseker-semistability has class ch(E1) = (k1, 0, −k1

d H2, m1) where 1 ≤ k1 < n and mi ∈ Z>0. 
But this contradicts Lemma 3.1 as well. �

3.2. The bundle QY and its projection

For any smooth Fano threefold Y of index 2 and degree d ≥ 2, we define the sheaf QY to be the kernel 
of the following evaluation map
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0 → QY → OY ⊗Hom(OY ,OY (1)) ev−→ OY (1) → 0. (9)

We have

ch(QY ) =
(
d + 1, −H, −1

2H
2, −1

6H
3
)
. (10)

Lemma 3.3. The sheaf QY is a μH-stable locally-free sheaf.

Proof. When the degree d of Y satisfies d ≥ 2, OY (1) has no base-point by [17, Theorem 2.4.5.(i)], hence 
QY is a bundle of rank d + 1. If it is not μH -stable, there is a stable reflexive sheaf Q′ ⊂ QY of bigger 
or equal slope, thus μH(Q′) ≥ 0. Since it is also a subsheaf of O⊕h0(OY (1))

Y and all stable factors of the 
latter are the direct sum of OY , we get Q′ is a direct sum of OY which is not possible as h0(QY ) = 0 by 
definition. �

Consider the semiorthogonal decomposition Db(Y )=〈Ku(Y ), OY , OY (1)〉. We know QY
∼=LOY

OY (1)[−1]. 
Consider the embedding i : Ku(Y ) ↪→ Db(Y ). We know QY ∈ 〈OY (−1), Ku(Y )〉, thus it lies in the exact 
triangle

i!QY = ROY (−1)(QY ) → QY → OY (−1) ⊗ RHom(QY ,OY (−1))∨.

The μH -stability of QY implies that Hom(QY , OY (−1)[k]) = 0 for k = 0, 3. Taking Hom(OY (1), −) from 
the exact sequence (9) implies that hom(QY , OY (−1)[1]) = hom(OY (1), QY [2]) = 0. Thus

hom(QY ,OY (−1)[2]) = χ(QY ,OY (−1)) = 1. (11)

Hence i!QY is a two-term complex lying in the exact triangle

OY (−1)[1] → i!QY → QY (12)

which is of Chern character ch(i!QY ) = dv. In Sections 4 and 5 we show that if d = 2 and d = 3, the object 
i!QY is Bridgeland-stable in Ku(Y ) and it is the only such object which is not Gieseker-stable.

4. Moduli spaces on quartic double solids

In this section, we always fix Y to be a del Pezzo threefold of degree two, i.e. a quartic double solid. We 
aim to classify Bridgeland semistable objects of class 2v in Ku(Y ) as described in the following.

Proposition 4.1. Let σ be a Serre-invariant stability condition on Ku(Y ) and E ∈ Ku(Y ) be a σ-(semi)stable 
object of class 2v. Then up to a shift, E is either a Gieseker-(semi)stable sheaf or i!QY .

Proof. By the uniqueness of Serre-invariant stability condition, we can assume that E ∈ A(b, w) is a σ(b, w)-
(semi)stable object of class6 −2v. We divide the proof into several cases. Some lemmas used in this proof 
will be presented later.

Step 1. First we assume that E is σ0
b0,w0

-semistable for some (b0, w0) ∈ V . Then by Lemma 2.4, we have 
an exact sequence in Coh0

b0,w0
(Y )

F [1] → E → T,

6 We put the shifted class −2v to get sure Im[Z(b, w)] ≥ 0 for (b, w) ∈ V .
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where F ∈ Cohb0(Y ) with ν+
b0,w0

(F ) ≤ b and T = 0 or supported on points. Now by the σ0
b0,w0

-semistability 
of E, we know that F is νb0,w0-semistable. By Lemma 3.1, F is νb0,w-semistable for w � 0 and ch3(F ) ≤ 0, 
which implies T = 0 and F [1] = E. Thus E[−1] is νb,w-semistable for w � 0, which implies that E[−1] is a 
Gieseker-semistable sheaf by Lemma 3.2.

Step 2. Now we assume that E is not σ0
b,w-semistable for any (b, w) ∈ V . By Proposition 2.3, we can 

assume that there is an open ball U ′ ⊂ R2 containing the point (b, w) = (−1, 12 ) such that for any (b, w) ∈
U−1, 12 := U ′ ∩ V , we have E ∈ A(b, w) and the Harder–Narasimhan filtration of E with respect to σ0

b,w is 
constant.

Let B be the destabilizing quotient object of E with minimum slope and A → E → B be the destabilizing 
sequence of E with respect to σ0

b,w for (b, w) ∈ U−1, 12 . Hence A, B ∈ Coh0
b,w(Y ), which gives

Im(Z0
b,w(E)) ≥ Im(Z0

b,w(B)) > 0, Im(Z0
b,w(E)) > Im(Z0

b,w(A)) ≥ 0 (13)

for all (b, w) ∈ U−1, 12 . Since Im(Z0
−1, 12

(E)) = 0, by the continuity, we have Im(Z0
−1, 12

(A)) = Im(Z0
−1, 12

(B)) =
0. Therefore, if we assume that ch≤2(B) = (x, yH, z2H

2) for x, y, z ∈ Z, from Im(Z0
−1, 12

(B)) = 0 we get 
z = −x − 2y. Thus we have

ch≤2(B) =
(
x, yH,

−x− 2y
2 H2

)
, ch≤2(A) =

(
−2 − x, −yH,

x + 2y + 2
2 H2

)
(14)

and by (13) we get

1 − 2b2 + 2w = Im(Z0
b,w(E)) ≥ Im(Z0

b,w(B)) = (2b2 − 2w − 1)x2 − (b + 1)y > 0 (15)

for all (b, w) ∈ U−1, 12 . Moreover, by definition we have μ0
b,w(E) > μ0

b,w(B) for any (b, w) ∈ U−1, 12 where 

μ0
b,w(−) = −Re[Z0

b,w(−)]
Im[Z0

b,w(−)] , thus

−2b
1 − 2b2 + 2w = μ0

b,w(E) > μ0
b,w(B) = (bx− y)

(2b2 − 2w − 1)x2 − (b + 1)y . (16)

Now by (15), b < 0 and (16), we have

−2b > bx− y. (17)

On the other hand, from [3, Remark 5.12], we have

(
μ0
b,w

)− (E) := μ0
b,w(B) ≥ min{μ0

b,w(E), μ0
b,w(OY ), μ0

b,w(OY (1))}

for any (b, w) ∈ V . Note that μ0
−1, 12

(OY ) = −2, μ0
−1, 12

(OY (1)) = −1 and μ0
b,w(E) > 0 when (b, w) ∈ U−1, 12

as Re[Z0
b,w(E)] = 2b < 0, thus μ0

b,w(B) ≥ −2. By taking the limit b → −1 and w → 1
2 and combining with 

(17), we get

2 ≥ −x− y ≥ 0.

Case 1. −x − y = 0. Then (16) for −y = x gives

−2b
1 − 2b2 + 2w >

(b + 1)
2 1 ,
(2b − 2w − 1) 2 + (b + 1)
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which has no solution for (b, w) ∈ V .
Case 2. −x − y = 1. Then ch≤2(B) = (x, (−x − 1)H, (x2 + 1)H2). Since B is σ0

b,w-semistable, Lemma 2.4
implies that ch≤2(B) is a possible class for ch≤2 of a νb,w-semistable object B′[1] where B′ ∈ Cohb(Y ). By 
[27, Proposition 3.2], the only possible cases are x = ±1 and ±2. Using (16), we get x = −2 and other 
cases are ruled out. Then we see ch≤2(B′) = (−2, H, 0). But then νb,w-semistability of B′ for (b, w) ∈ U−1, 12
and wall and chamber structure described in Proposition 2.3 implies that B′ is νb=−1,w-semistable when 
1
2 < w < 1

2 +ε. Since there is no wall for B′ crossing the vertical line b = −1, we get B′ is νb=−1,w-semistable 
for w � 0. Thus B′ is a μH -stable sheaf which is not possible by the following Lemma 4.2.

Case 3. −x − y = 2. Then we have ch≤2(B) = (x, (−x − 2)H, (x2 + 2)H2). By [27, Proposition 3.2], we 
have |x| ≤ 3. Using (16), we get x = −3 and other cases are ruled out. Then ch≤2(B) = (−3, H, 12H

2). We 
claim that RHom(OY , B) = 0, which implies ch(B) = (−3, H, 12H

2, 16H
3). Indeed, since OY , OY (−2)[2] ∈

Coh0
b,w(X), by Serre duality we have Hom(OY , B[i]) = Hom(B, OY (−2)[3 − i]) = 0 for i �= 0, 1. We know 

lim(b,w)→(−1, 12 ) μ
0
b,w(B) = +∞, so by shrinking the open ball U ′, we may assume

(μ0
b,w)−(A) > μ0

b,w(B) > μ0
b,w(OY (−2)[2]) (18)

Then σ0
b,w-semistability of B and OY (−2)[2] implies that Hom(OY , B[1]) = Hom(B, OY (−2)[2]) = 0

Moreover, using E ∈ Ku(Y ), we have Hom(OY , B) = Hom(OY , A[1]). Then (18) gives Hom(OY , A[1]) =
Hom(A, OY (−2)[2]) = 0, so the claim follows. Then Lemma 4.3 implies that B = QY [1] = LOY

OY (1).
We know ch(A) = ch(OY (−1)[2]), so lim(b,w)→(−1, 12 ) Z

0
b,w(A) = 0, thus if A is not σ0

b,w-semistable for any 
(b, w) ∈ U ′, then the destabilizing factors Ai all satisfy lim(b,w)→(−1, 12 ) Im[Z0

b,w(Ai)] = 0. Since by (18), we 
know μ0

b,w(Ai) ≥ 0, we have Re[Z0
b,w(Ai)] ≤ 0 for all i. This implies that lim(b,w)→(−1, 12 ) Re[Z0

b,w](Ai) = 0, 
and so ch≤2(Ai) is a multiple of ch≤2(OY (−1)) which is not possible. Thus A is σ0

b,w-semistable with

Hom(A,OY (−1)[2]) = Hom(OY (1), A[1]) = Hom(OY (1), B) �= 0.

This shows that A = OY (−1)[2] and so E = i!QY [1] as Hom(QY [1], OY (−1)[3]) = 1 by (11). Finally, 
Lemma 4.4 implies the stability of i!QY , which completes the proof. �

Lemma 4.2. Let F be a slope stable sheaf with ch≤2(F ) = (2, −H, sH2, tH3). Then s ≤ −1
2 . And if s = −1

2 , 
then t ≤ 1

3 . Moreover, when s = −1
2 and t = 1

3 , F is locally free.

Proof. Assume that s > −1
2 . By [27, Proposition 3.2], we have s = 0. Thus ch≤2(F ) = ch≤2(F∨∨) and we 

can assume that F is reflexive. Since ch−1
1 (F ) = 1, there is no wall for F intersects with b = −1. Since the line 

segment connecting Π(F ) and Π(OY (−2)) intersects with b = −1 inside Ũ , we have Hom(F, OY (−2)[1]) =
H2(F ) = 0. And by the μH-stability we have H0(F ) = 0, which implies χ(F ) = c3(F )+1

2 < 0. However, since 
F is reflexive and has rank two, we get c3(F ) ≥ 0 by [14, Proposition 2.6],7 which makes a contradiction.

Now we assume that s = −1
2 . Since there is no wall for F intersects with b = −1 and the line segment 

connecting Π(F ) and Π(OY (−2)) intersects with b = −1 inside Ũ , we have Hom(F, OY (−2)[1]) = H2(F ) =
0. Hence by H0(F ) = 0, we see χ(F ) = 2t − 2

3 ≤ 0, which implies t ≤ 1
3 .

Finally, when s = −1
2 and t = 1

3 , we know F is reflexive. Then c3(F ) = 0, and so F is locally free by [14, 
Proposition 2.6]. �

Lemma 4.3. Let F be a μH-stable sheaf of class ch≤2(F ) = (3, −H, sH2), then s ≤ −1
2 . When s = −1

2 , we 
have ch3(F ) ≤ −1

6H
3. Moreover, s = −1

2 and ch3(F ) = −1
6H

3 if and only if F = QY = LOY
OY (1)[−1].

7 Although [14, Proposition 2.6] only states for P3, it is well-known that it also works for any smooth projective threefold of 
Picard rank one.
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Proof. We know s ≤ −1
2 from Lemma [27, Proposition 3.2]. When s = −1

2 , since ch− 1
2

1 (F ) = 1
2 , and the line 

segment connecting Π(F ) and Π(OY (−2)) intersects b = −1
2 inside Ũ , we know that Hom(F, OY (−2)[1])) =

H2(F ) = 0. Since H0(F ) = 0 by the μH -stability of F , we see χ(F ) ≤ 0, which implies ch3(F ) ≤ −1
6H

3.
Now assume that s = −1

2 and ch3(F ) = −1
6H

3. Then F is reflexive by the previous results. Thus F [1] is 
ν0,w-semistable for any w > 0. Since the line segment connecting Π(F ) and Π(OY (2)) intersects with b = 0
inside Ũ , we see Hom(OY (2), F [1]) = Hom(F, OY [2]) = 0. Thus from χ(F, OY ) = 4, we see hom(F, OY ) ≥ 4. 
Pick four sections and consider the corresponding extension

O⊕4
Y → G → F [1]

Let � be the line connecting Π(F ) and Π(OY ). We know G is νb,w-semistable for (b, w) ∈ � ∩ Ũ as F [1]
and OY are νb,w-stable of the same slope. Moreover, Hom(OY , F [1]) = 0. Since ch(G) = ch(OY (1)), the 
same argument as in [2, Proposition 4.20] implies that G ∼= OY (1). Thus F ∼= QY as h0(G) = 4 and 
Hom(OY , F [1]) = 0. Note that the μH -stability of QY follows from Lemma 3.3. �

Lemma 4.4. Let σ be a Serre-invariant stability condition on Ku(Y ). Then i!QY is σ-stable.

Proof. We can assume that σ = σ(−1
2 , w) for some 1

4 > w > 0. As ch− 1
2 (QY [1]) = ch− 1

2 (OY (−1)[1]) = 1
2

is minimal, both QY and OY (−1)[1] are νb=− 1
2 ,w

-stable for any w > 0. Then Lemma 2.4 implies that 
QY [1], OY (−1)[2] ∈ Coh0

b=− 1
2 ,w

and both are σ0
b,w-stable. Thus by the exact sequence (12), i!QY [1] ∈

A(−1
2 , w). Suppose for a contradiction that i!QY [1] is not σ(−1

2 , w)-semistable, and let F be the destabilizing 
quotient object of minimum slope. We can write the class [F ] = xv + yw for x, y ∈ Z. Then by taking 
w = 5

32 , one can check the only integers x, y satisfying

Im(Z0
− 1

2 ,w
(i!QY [1])) ≥ Im(Z0

− 1
2 ,w

(F )) > 0

and

μ0
− 1

2 ,w
(QY [1]) ≤ μ0

− 1
2 ,w

(F ) < μ0
− 1

2 ,w
(i!QY [1]) (19)

are (x, y) = (−1, 1). The left-hand inequality in (19) comes from the short exact sequence (12) and the fact 
that μ0

b=− 1
2 ,w

(QY [1]) < μ0
b=− 1

2 ,w
(OY (−1)[2]) for any w > 0. By [38, Theorem 1.1], we know that F fits into 

a triangle OY (−1)[1] → F → Ol(−1) for a line l ⊂ Y . However Hom(i!QY [1], F ) = Hom(i!QY [1], Ol(−1)) =
0, which makes a contradiction. �

Remark 4.5. Note that i!QY [1] is not stable in double tilted heart Coh0
b=− 1

2 ,w
. In fact, it is destabilized by 

OY (−1)[2]. There is no wall in the (b, w)-plane which would make i!QY [1] stable. The objects E fitting in a 
triangle QY [1] → E[1] → OY (−1)[2] are obtained from triangle (12) as all possible extensions in the other 
direction. This corresponds to a blow up at the point [i!QY ] in the Bridgeland moduli space Mσ(Ku(Y ), 2v)
of σ-stable objects of class 2v in Ku(Y ) with the exceptional locus parametrizing those semistable sheaves 
of rank two, c1 = 0, c2 = 2 and c3 = 0 not in Ku(Y ). For more details, see Section A.

5. Moduli spaces on cubic threefolds

In this section, we always fix Y to be a del Pezzo threefold of degree three, i.e. a cubic threefold. The 
goal of this section is to prove Proposition 5.5 which classifies Bridgeland semistable objects of class 3v in 
Ku(Y ).

Consider the line �d=3 as defined in section 3.1 which passes through Π(OY (−H)) and Π(v). It is of the 
equation
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w = −5
6b−

1
3 ,

and intersects ∂Ũ at two points with b-values b1 = −1 and b2 = −2
5 . We know by Lemma 3.1 that there is 

no wall for an object E of class ch≤2(E) = (3, 0, −H2) between the large volume limit (b < 0 and w � 0) 
and the line �3. The following Proposition describes the objects which gets destabilized along the wall �3.

Proposition 5.1. Take a point (b, w) ∈ �3∩Ũ and let E be a strictly νb,w-semistable object of class ch≤2(E) =
(3, 0, −H2) which is unstable in one side of the wall �3. Then the destabilizing sequence is E1 → E → E2
where one of the factors Ei is OY (−1)[1] and the other one Ej is a μH-stable sheaf of class ch≤2(Ej) =
(4, −H, −1

2H
2). In particular, we have ch3(E) ≤ 0.

Proof. Let E1 → E → E2 be a destabilizing sequence along the wall. If the destabilizing factors E1 and 
E2 are both sheaves, then −2

5 = b2 ≤ μH(Ei) for i = 1, 2. Moreover, the location of the wall implies that 
μH(Ei) �= 0. Thus ch≤1(E1) = (3, −H) up to relabeling the factors. Moreover ch2(E1) = −1

6H
2 because 

Π(E1) lies on �3. We know the wall �3 passes through the vertical line b = −1
2 at a point inside Ũ , thus E1

is νb=− 1
2 ,w

-semistable for some w > 0. This implies E1 is νb=− 1
2 ,w

-stable for any w > 0 by [12, Lemma 3.5], 
and so E1 is a μH -stable sheaf which is not possible by Lemma 5.2. Thus E1 or E2 are not both sheaves.

Let (r, cH) = ch≤1(H−1(E1)) + ch≤1(H−1(E2)), then (8) gives

−2
5(r + 3) ≤ c ≤ −r.

Thus either (r, c) is equal to (2, −2) or (1, −1).
Case I. First assume (r, c) is equal to (2, −2). We know H−1(Ei) are torsion-free sheaves. They are 

even reflexive, otherwise there is a torsion sheaf T supported in co-dimension at least 2 with embedding 
T ↪→ H−1(Ei)[1] ↪→ Ei in Cohb(Y ). This is not possible as νb,w-slope of semistable factors Ei’s are equal to 
E which is not +∞. Thus one of the following cases can happen:

(a) ch≤1(H−1(Ei)) = (1, −H) for i = 1, 2, or
(b) H−1(E1) = 0 and ch≤1(H−1(E2)) = (2, −2H).

On the other hand, we have

ch≤1(H0(E1)) + ch≤1(H0(E2)) = (5,−2H).

Since for i = 1, 2,

μH(H0(Ei)) ≥ μ−
H(H0(Ei)) ≥ −2

5 , (20)

the sheaf H0(Ei) is torsion supported in dimension at most 1 for either i = 1 or i = 2.
In case (a), we have H−1(Ei) = OY (−1) for i = 1, 2. By relabeling the factors, we may assume H0(E2)

is a torsion sheaf. We know Π(E2) lies on the line �d and

ch≤2(E2) = ch≤2(H0(E2)) − ch≤2(H−1(E2))

=
(
0, 0, ch2(H0(E2))

)
−

(
1,−H,

H2

2

)
.

This implies that ch2(H0(E2)) = 0, and so
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ch2(H0(E1)) = ch2(H−1(E1)) + ch2(H−1(E2)) + ch2(E) = 0

which implies ch≤2(H0(E1)) = (5, −2H, 0). Thus Π(H0(E1)) lies on the boundary of Ũ which is not possible 
by [27, Proposition 3.2] as (20) implies that H0(E1) is a μH -stable sheaf.

In case (b), we have E1 ∼= H0(E1). Thus H0(E1) cannot be supported in dimension 1, and so ch≤1(E1) =
ch≤1(H0(E1)) = (5, −2H). Since Π(E1) lies on �d, we have ch2(E1) = 0 which is not again possible by the 
same argument as in case (a).

Case II. Now suppose (r, c) = (1, −1), so by relabeling the factors, we may assume H−1(E1) = 0 and 
H−1(E2) = OY (−H). Moreover,

ch≤2(H0(E1)) + ch≤2(H0(E2)) =
(

4,−H,−1
2H

2
)
. (21)

Let ch≤2(E1) = (r1, c1H, s1H
2). Since μH(H0(Ei)) ≥ −2

5 , we gain

−2
5r1 ≤ c1 ≤ −2

5r1 + 3
5 .

Thus (r1, c1) is equal to (0, 0), (1, 0), (3, −1), or (4, −1). The first case cannot happen as torsion sheaves 
supported in dimension ≤ 1 cannot make a wall. If (r1, c1) = (1, 0), then since Π(E1) lies on �d, we have 
s1 = −1

3 , thus E1 has the same νb,w-slope as E with respect to any (b, w), thus it cannot make a wall. If 
(r1, c1) = (3, −1), then s1 = −1

6 . We know the wall �3 passes through the vertical line b = −1
2 at a point 

inside Ũ , thus [12, Lemma 3.5] implies that E1 is a μH -stable sheaf which is not possible by Lemma 5.2. 
Thus we have

ch≤2(E1) =
(

4,−H,−1
2H

2
)
, (22)

and H0(E2) is a skyscraper sheaf. Then [2, Proposition 4.20] implies that E2 ∼= OY (−1)[1]. Since E1 is 
νb,w-semistable on �3, it is νb=− 1

2 ,w= 1
12

-semistable. Thus by Lemma 5.3, E1 is a μH -stable reflexive sheaf. 
Finally, the last statement follows from Lemma 5.4 that ch3(E1) ≤ −1

6H
3. �

Lemma 5.2. There is no μH-stable sheaf E of class ch≤2(E) = (3, H, sH2) for s ≥ −1
6 .

Proof. Assume there is such a stable sheaf E. By replacing E with its double dual, we may assume E is a 
reflexive sheaf. Consider the line � passing through Π(E) and Π(E(−2)) which is of equation

w = −2
3b + s

3 + 2
9 .

Since s ≥ −1
6 , it crosses the vertical lines b = 0 and b = −3

2 at points inside Ũ . Thus [12, Lemma 
3.5] implies that both E and E(−2)[1] are νb,w-stable of the same slope for (b, w) ∈ � ∩ Ũ . This implies 
hom(E, E(−2)[1]) = hom(E, E[2]) = 0 which is a contradiction as hom(E, E) = 1 and χ(E, E) = 18s + 6 ≥
3. �

Lemma 5.3. Let b0 = −1
2 and pick w ≥ 1

12 (note that the point (b0, 1
12 ) ∈ Ũ∩�3). There is no νb0,w-semistable 

object E of class ch≤2(E) = (4, −H, sH2) for s > −1
2 . Moreover, if s = −1

2 , then νb0,w-semistability of E
at some w ≥ 1

12 implies that it is νb0,w-stable for any w ≥ 1
12 . In particular, in this case, E is a μH-stable 

reflexive sheaf.
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Proof. Let E be a νb0,w-semistable object of class ch≤1(E) = (4, −H) such that ch2(E)H ≥ −H3

2 . We first 
claim E is νb0,w-stable for any w ≥ 1

12 . If not, there is a wall � for E passing through νb0,w for some w ≥ 1
12 . 

Let E1 be a destabilizing factor of class (r1, c1H, s1) such that r1 > 0. We have

0 < Im[Zb=− 1
2 ,w0(E1)] = c1 + 1

2r1 < Im[Zb=− 1
2 ,w0(E1)] = 1.

Thus c1 + 1
2r1 = 1

2 . If c1
r1

< −2
5 , then the position of the wall implies that Π(E1) lies in Ũ which is not 

possible. Thus

−2
5 ≤ c1

r1
= −1

2 + 1
2r1

which implies (r1, c1) is equal to (3, −1), or (5, −2). We know Π(E1) lies above or on the line �3. Thus the 
first cannot happen by Lemma 5.2. In the latter, s1 = 0 and Π(E1) lies on the boundary ∂Ũ which is not 
again possible by [27, Proposition 3.2]. Therefore, E is νb0,w-stable for w ≥ 1

12 and so a μH -stable sheaf.
To complete the proof, we only need to show that we cannot have s > −1

2 . Assume otherwise, then we 
may assume E is a reflexive sheaf, so E(−2)[1] is νb,w-stable for b > −9

4 and w � 0. Since s ∈ 1
6Z, we have 

s ≥ −1
3 . We know there is no wall for E(−2)[1] crossing the vertical line b = −2 for w > 2. Thus one can 

check that E and E(−2)[1] are νb,w-stable of the same phase for (b, w) ∈ � ∩ Ũ where � is the line passing 
through Π(E) and Π(E(−2)). Hence, hom(E, E[2]) = 0 but χ(E, E) ≥ 5, a contradiction. �

Lemma 5.4. Let E be a μH-stable sheaf on Y of class

ch(E) =
(

4,−H,−1
2H

2, sH3
)
.

Then s ≤ −1
6 . Moreover s = −1

6 if and only if E ∼= QY = LOY
OY (1)[−1].

Proof. By μH -stability of E, we have Hom(OY , E) = 0 = Hom(OY , E[3]) = Hom(E, OY (−2)). And since 
the line segment connecting Π(E) and Π(OY (−2)) intersects b = −1

2 at a point with w > 1
12 , by Lemma 5.3

we have 0 = Hom(E, OY (−2)[1]) = Hom(OY , E[2]), which gives χ(E) = − hom1(OY , E) ≤ 0 and s ≤ −1
6 .

Now assume that s = −1
6 . Then E is reflexive by Lemma 5.3 and the previous result. Thus its shift E[1]

is νb,w-stable for b > −1
4 and w � 0. We know there is no wall for E[1] passing through the vertical line 

b = 0. Therefore hom(E, OY [2]) = hom(OY (2), E[1]) = 0 and so

hom(E,OY ) ≥ χ(E,OY ) = 5

Hence the first wall � for E[1] will be made by OY [1]. Pick five linearly independent elements from 
Hom(E, OY ), and let G be the kernel of the evaluation map in the abelian category of νb,w-semistable 
objects of the same slope as E[1] and OY [1] for (b, w) ∈ � ∩ Ũ :

G ↪→ E[1] � O⊕5
Y [1].

We know ch(G) = ch(OY (1)), so G ∼= OY (1) by [2, Proposition 4.20] and the claim follows. �

Finally, we can describe Bridgeland stable objects with class 3v in Ku(Y ).

Proposition 5.5. Let σ be a Serre-invariant stability condition on Ku(Y ) and E ∈ Ku(Y ) be a σ-(semi)stable 
object of class 3v. Then up to a shift, E is either a Gieseker-(semi)stable sheaf or i!QY .
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Proof. By the uniqueness of Serre-invariant stability conditions on Ku(Y ), we can take σ = σ(b0, w0), where 
(b0, w0) = (−5

6 , 
13
36 ). And we can assume E ∈ A(b0, w0) of class −3v. We have chosen the point (b0, w0) ∈ V

so that μ0
b0,w0

(−3v) = +∞. Thus E is σ0
b0,w0

-semistable, then Lemma 2.4 implies that E lies in the exact 
triangle

F [1] → E → T

where F ∈ Cohb0(Y ) is νb0,w0-semistable and T ∈ Coh0(X). So we have ch(F ) = 3v + ch(T ). As the point 
(b0, w0) lies on �3, either (i) F is strictly νb0,w0 -semistable and unstable above the wall �3, or (ii) it is 
semistable above the line �3 and so it’s a large volume limit semistable sheaf by Lemma 3.1.

In case (i), Proposition 5.1 implies that ch3(F ) ≤ 0 and so T = 0. Also combining it with Lemma 5.4
implies that E[−1] = F lies in the non-trivial exact sequence

OY (−1)[1] → E[−1] → QY .

Since Hom(QY , OY (−1)[2]) = 1 by (11), we get E = i!QY [1].
In case (ii), Lemma 3.1 shows that F is large volume limit semistable and ch3(F ) ≤ 0, so T = 0. Hence 

E[−1] = F is a Gieseker-semistable sheaf by Lemma 3.2. �

6. Brill–Noether reconstruction

Let Y := Yd be a del Pezzo threefold of Picard rank one of degree d ≥ 2. In this section, we prove 
Theorem 1.2 in the introduction in Theorem 6.2.

Let Op be the skyscraper sheaf at any point p ∈ Y . We know LOY (1) Op
∼= Ip(1)[1], and so

i∗ Op
∼= LOY

(Ip(1))[1]. (23)

We have ch(i∗ Op) =
(
d,−H,−1

2H
2, ( 1

d − 1
6 )H3) = dv − w. The following proposition characterizes stable 

objects in Ku(Y ) of class dv − w.

Proposition 6.1 ([1]). Let F ∈ Ku(Y ) be a σ-stable object of class dv − w for a Serre-invariant stability 
condition σ. Then up to a shift, F is either isomorphic to i∗ Op for a point p ∈ Y , or it is of the form 
O (j∗T ) where T is a Gieseker-stable reflexive sheaf supported on a hyperplane section j : S ↪→ Y . This 
induces a well-defined map

Ψ: Y ↪→ Mσ(Ku(Y ), dv − w) (24)

p �→ i∗ Op

which gives an embedding of Y into the moduli space Mσ(Ku(Y ), dv − w) as a smooth subvariety.

Proof. Since all stability conditions σ(b, w) for (b, w) ∈ V lie in the same orbit with respect to the action of 
G̃L

+
2 (R) and they are O-invariant, we can consider σ

(
−1

2 , w0
)

where 
(
b = −1

2 , w0
)
∈ V , and characterize

σ
(
−1

2 , w0
)
-stable objects of class O−1(dv − w) = −w.

Take a σ
(
−1

2 , w0
)
-stable object E ∈ A 

(
−1

2 , w
)

of class −w. Since μ0
− 1

2 ,w
(E) = +∞, we know E is 

σ0
− 1

2 ,w
-semistable. Then by [1, Lemma 4.15], E[−1] is ν− 1

2 ,w0 -semistable. By the proof of [1, Proposition 

4.7], the only wall for E[−1] intersecting b = −1
2 is the line � passing through Π(OY (−1)) of slope −1

2 . Thus 
when we move up from the point 

(
−1 , w0

)
along the line b = −1 , either
2 2
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(i) E[−1] is νb=− 1
2 ,w

-semistable for all w � 0, i.e. it is a Gieseker-stable sheaf, or
(ii) E[−1] gets destabilized along the wall �.

In case (ii), the destabilizing sequence is of form A → E[−1] → B, where ch≤2(B) = ch≤2(OY ) as in the 
proof of [1, Proposition 4.7]. Hence ch≤2(A) = ch≤2(OY (−1)[1]). Since ΔH(A) = ΔH(B) = 0, A and B are 
ν− 1

2 ,w
-semistable for any w. This proves A = OY (−1)[1] and B = Ip for a point p ∈ Y . Thus E[−1] = Ep

where Ep is the unique extension

OY (−1)[1] → Ep → Ip . (25)

Thus O(E[−1]) = O(Ep) ∼= i∗ Op as claimed. Hence Ψ is a well-defined map which is the composition of the 
embedding Y ↪→ Mσ(Ku(Y ), −w) given in [1, Lemma 4.8] (which sends p ∈ Y to Ep), and the isomorphism 
Mσ(Ku(Y ), −w) → Mσ(Ku(Y ), dv − w) given by O. In particular, Ψ is an embedding. �

Note that although in [1], Y is assumed to be general, the above results hold for any smooth Fano 
threefold Y of index 2 and degree d. Their aim for the generality assumption is to get an explicit description 
for Gieseker-stable sheaves of class w using roots on del Pezzo surfaces, which we do not need in this paper.

Theorem 6.2 (Brill–Noether reconstruction for del Pezzo threefolds). Let σ be a Serre-invariant stability 
condition on Ku(Y ). Then the map Ψ defined in (24) induces an isomorphism between Y and the Brill–
Noether locus

BN Y := {F ∈ Mσ(Ku(Y ), [i∗ Op]) : dimC Hom(F, i!QY ) ≥ d + 1}

where Op is the skyscraper sheaf supported at a point p ∈ Y .

Proof. Recall that QY := LOY
OY (1)[−1] as defined in (9) which is a vector bundle when d ≥ 2. By 

adjunction of i∗ and i!, we have RHom(F, i!QY ) = RHom(F, QY ). Up to a shift, by Proposition 6.1, we 
can assume F is either (i) isomorphic to i∗ Op for a point p ∈ Y , or (ii) of the form O(j∗T ) where T is a 
Gieseker-stable sheaf supported on a hyperplane section j : S ↪→ Y .

In case (i), since RHom(OY , QY ) = 0, by (23), we only need to compute RHom(Ip(1), QY ). Since QY

is a bundle of rank d + 1, we get RHom(Op, QY ) = Cd+1[−3]. Now applying Hom(−, QY ) to the exact 
sequence 0 → Ip(1) → OY (1) → Op → 0, since RHom(OY (1), QY ) = C[−1], we see RHom(Ip(1), QY ) =
C[−1] ⊕Cd+1[−2]. Hence there exists k ∈ Z, so that Ψ(p)[k] ∈ BN Y for any point p ∈ Y .

In case (ii), by definition of the rotation functor O in (6), we only need to compute RHom(j∗T (1), QY )
as RHom(OY , QY ) = 0. Clearly Hom(j∗T (1), QY ) = 0 and

hom (j∗T (1),QY [k]) = hom (QY , j∗T (−1)[3 − k]) = homS (QY |S , T (−1)[3 − k]) . (26)

Now we apply next Lemma 6.4 to show that the above Hom-spaces vanish for k = 3, 1, so we get 
RHom(j∗T (1), QY ) = Cd[−2] as χ(j∗T (1), QY ) = d.

k = 3: Since S ∈ |H| is irreducible, Lemma 6.4 implies that both j∗ OS and j∗QS are 2-Gieseker semistable 
of classes

ch(j∗ OS) =
(

0, H, −H2

2 ,
H3

6

)
and ch≤2(j∗QS) =

(
0, (d + 1)H, −d + 3

2 H2
)
.

Since ch≤2(j∗T (−1)) =
(
0, H,−3

2H
2), comparing slopes implies that

Hom(j∗ OS , j∗T (−1)) = 0 = Hom(j∗QS , j∗T (−1)).
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Thus the short exact sequence (27) in Lemma 6.4 below implies that Hom(j∗QY |S , j∗T (−1)) = 0.
k = 1: By Serre-duality on S, we know homS(QY |S , T (−1)[2]) = homS(T, QY |S) which vanishes as

Hom(j∗T, j∗ OS) = 0 = Hom(j∗T, j∗QS)

by comparing slopes.
Finally, we get j∗T /∈ BN Y and so Ψ(Y ) = BN Y , then the claim follows from Proposition 6.1. �

Remark 6.3. The proof of Theorem 6.2 also shows that BN Y can be written as

BN Y = {F ∈ Mσ(Ku(Y ), [i∗ Op]) : RHom(F, i!QY ) is a two-term complex}.

Lemma 6.4. Let Y be a del Pezzo threefold of Picard rank one of degree d ≥ 2, and let S ↪→ Y be a hyperplane 
section. Then QY |S fits into an exact sequence

0 → OS → QY |S → QS → 0, (27)

where QS := LOS
OS(1)[−1] ∈ Coh(S) is a H|S-μH-semistable bundle on S.

Proof. By the restriction of the exact sequence (9), we get the exact sequence

0 → QY |S → O⊕d+2
S → OS(1) → 0

on S. This gives RHomS(OS , QY |S) = C. Take a non-zero section s : OS → QY |S , then we get the following 
commutative diagram with exact rows

0 OS OS 0

0 QY |S O⊕d+2
S OS(1) 0.

s

By taking the cokernel, we get an exact sequence

0 → coker(s) → O⊕d+1
S → OS(1) → 0. (28)

This implies coker(s) ∼= QS as RHomS(OS , coker(s)) = 0. To complete the proof, we only need to show 
QS is μH|S -semistable. Assume otherwise, and let F be a destabilizing subsheaf. We may assume F is 
μH|S -stable. Then the exact sequence (28) implies that

−1
d

= μH|S (QS) < μH|S (F ) ≤ μH|S (OS) = 0.

Since rk(F ) < d, we must have μH|s(F ) = 0. We can assume that F is saturated in QS , hence is saturated 
in Od+1

S as well. By the uniqueness of Jordan–Hölder factors, we get F ∼= O⊕ rkF
S . Thus HomS(OS , QS) �= 0, 

which contradicts the construction of QS. �

6.1. Classical moduli spaces on curves and Brill–Noether reconstruction

Let Y be a smooth degree 4 del Pezzo threefold, which is the intersection of two quadrics in P 5. There is 
an FM equivalence ΦS : Db(C) 

∼=−→ Ku(Y ) for a genus two curve C. Denote by MC(2, L1) the moduli space 
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of stable vector bundle of rank two with fixed determinant L1 such that degree d(L1) = 1. By [35, Theorem 
1] we know

Y ∼= MC(2,L1) (29)

Note that S is the universal spinor bundle on C ×Y . On the other hand, using Theorem 6.2 and acting the 
inverse of the rotation functor O, we get

Y ∼= O−1(BN Y ) = {E ∈ Mσ(Ku(Y ),−w) : dimC Hom(F, i! OY ) ≥ 5}.

By [24, Lemma 5.9], Φ−1
S (i! OY ) ∼= R[1] where R is a second Raynaud bundle, which is a semistable vector 

bundle of rank 4 and degree 4 on C. Moreover, it is unique up to a twist by a line bundle of degree 0, see 
[24, Section 5.4]. By [1, Section 5.2], the equivalence Φ sends the Bridgeland moduli space Mσ(Ku(Y ), −w)
to MC(2, 1). Thus

Y ∼= {F ∈ MC(2, 1) : dimC Hom(F, R[1]) ≥ 5}
∼= {F ∈ MC(2, 1) : dimC Hom(F, R) ≥ 1} (30)

as χ(F, R) = −4. Comparing (29) and (30) gives the impression that fixing determinant of F ∈ MC(2, 1) is 
equivalent to imposing the Brill–Noether condition.

Let J(Y ) be the intermediate Jacobian of Y . As in [1, Section 4.4 & Section 5.2],8 we consider the map

P : Mσ(Ku(Y ),−w) → J(Y )

E �→ c̃2(E) −H2

where c̃2(E) is the second Chern class of E up to rational equivalence. We know Ψ(Ep) = 0 and P−1(0) is 
isomorphic to Y , thus P([O(T )]) �= 0 where T is a Gieseker-stable sheaf supported on a hyperplane section 
S.

By [1, Section 5.2], P−1(0) ∼= Y ⊂ Mσ(Ku(Y ), −w) such that Y ∼= {Ep : p ∈ Y } (see [1, Proposition 
4.7] for definition of Ep). Then Y ∼= O−1(BN Y ) ∼= BN Y .

There is an equivalence Φ1 : Pic1(C) → J(Y ) so that Φ1(L1) = 0 and it induces the commutative diagram 
[41, Theorem 4.14(c’)]

MC(2, 1) det

ΦS

Pic1(C)

Φ1

Mσ(Ku(Y ),−w) P
J(Y ).

This shows that we have an isomorphism

MC(2,L1) ∼= det−1(L1) ∼= P−1(0) ∼= BN Y .

8 Although some parts in [1] assume Y to be general, the arguments in [1, Section 4.4 & Section 5.2] do not use any generic 
assumption.
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7. Uniqueness of the gluing object

In this section, we prove the following Theorem.

Theorem 7.1. Let Φ: Ku(Y ) � Ku(Y ′) be an exact equivalence of Kuznetsov components of del Pezzo 
threefolds of the same degree d where 2 ≤ d ≤ 4.

(i) If d = 2, 3, there exist a unique pair of integers m1, m2 ∈ Z with 0 ≤ m1 ≤ 3 when d = 2 and 
0 ≤ m1 ≤ 5 when d = 3, so that

Φ(i!QY ) ∼= Om1(i′!QY ′)[m2].

(ii) If d = 4, there exists a unique pair of integers m1, m2 and a unique auto-equivalence TL0 ∈
Aut0(Ku(Y ′)) (see Section 7.3 for definition) so that

Φ(i!QY ) ∼= Om1 ◦ TL0(i′
!QY ′)[m2].

Here i′ : Ku(Y ′) ↪→ Db(Y ′) is the inclusion functor.

Remark 7.2. Theorem 7.1 also holds if we replace i!QY and i′ !QY ′ by i! OY and i′ ! OY ′ , respectively. The 
reason is that O(i! OY ) ∼= i!QY and the proof only uses the properties of Bridgeland moduli spaces with 
respect to Serre-invariant stability conditions and objects in them, which are all preserved by O.

Remark 7.3. The proof of Theorem 7.1 actually shows that if Φ maps v and w to v′ and w′ respectively, 
then Φ(i!QY ) = i′ !QY ′ up to shift and action of TL0 (when d = 4).

We first discuss the action of equivalences on the numerical Grothendieck groups, and then investigate 
each degree separately.

Lemma 7.4. Let Y and Y ′ be two del Pezzo threefolds of Picard rank ones of degree d and Φ : Ku(Y ) →
Ku(Y ′) an equivalence. Let φ : N (Ku(Y )) → N (Ku(Y ′)) be the induced isometry. Then

(a) If φ(mv) = mv′ for a non-zero integer m, then φ(v) = v′ and φ(w) = w′.
(b) Up to composing with O and [1], φ maps classes v and w to v′ and w′, respectively.

Proof. Recall that the numerical Grothendieck group N (Ku(Y ′)) has no torsion. In part (a), from φ(mv) =
mv′ we have φ(v) = v′. Now we assume that φ(w) = av′ + bw′ for a, b ∈ Z. Using χ(v, w) = −1 and 
χ(w, v) = 1 − d, we get χ(v′, av′ + bw′) = −1 and χ(av′ + bw′, v′) = 1 − d. Thus we obtain −a − b = −1
and −a + (1 − d)b = 1 − d, which gives (a, b) = (0, 1) when d �= 2. When d = 2, using χ(w, w) =
χ(av′ + bw′, av′ + bw′) = −d, we obtain (a, b) = (0, 1) or (2, −1). We claim the latter cannot happen, 
otherwise

φ(v) = v′ and φ(v − w) = −(v′ − w′).

For any line l ⊂ Y , we define Jl := O−1(Il)[1] ∈ Ku(Y ) as in [38]. Fix two lines l1, l2 ⊂ Y such that l1∩ l2 �=
∅. Then by [38, Remark 4.8], we have Hom(Il1 , Jl2) �= 0. Since χ(Il1 , Jl2) = 0 and Hom(Il1 , Jl2 [n]) = 0
when n ≤ −1 and n ≥ 2, we get Hom(Il1 , Jl2 [1]) �= 0.

Let σ be a Serre-invariant stability condition on Ku(Y ), then by [38, Theorem 1.1] any σ-stable object 
of class [Il] in Ku(Y ) is the shifted ideal sheaf Il′ [k] for some line l′ on Y . The same claim also holds for 
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objects of class [Jl] = −[O−1(Il)] as σ is O-invariant. Recall that there is a unique Serre-invariant stability 

condition on Ku(Y ) up to G̃L
+
2 (R)-action. Since Φ commutes with the Serre functor, Φ.σ is also a Serre-

invariant stability condition on Ku(Y ′). Thus by φ(v) = v′ and φ(v − w) = −(v′ − w′), up to a shift, we 
can assume that Φ(Il1) = Il′1 and Φ(Jl2) = Jl′2 [k] for lines l′1, l′2 ⊂ Y ′ and an odd integer k. Thus we get 
Hom(Il′1 , Jl′2 [k]) = Hom(Il′1 , Jl′2 [1 + k]) �= 0. This implies k = 0 and makes a contradiction which completes 
the proof of part (a).

For part (b), we claim that up to composing with O and [1], v maps to v′. Indeed, the image of v is still 
a (−1)-class in N (Ku(Y )) since Φ is an equivalence. Then the claim for d ≥ 3 follows from [32, Corollary 
4.2]. And up to sign, a (−1)-class is either v′ or v′ −w′ for d = 2, and v′, w′ or v′ −w′ for d = 1. They are 
permuted by rotation functor O and the claim follows. Thus the result follows from part (a) and the claim 
above. �

7.1. Degree 2 case

We first consider a del Pezzo threefold Y of degree 2 which is a quartic double solid. It is a double cover 
π : Y → P 3 which is ramified over a smooth surface R ⊂ P 3 of degree 4. The branch divisor of π maps 
isomorphic to R, which we also denote by R ⊂ Y . The involution on Y given by the double cover is denoted 
by τ . The Serre functor of Ku(Y ) is SKu(Y ) = τ [2]. Moreover we have OY (R) = OY (2). The key idea to 
prove Theorem 7.1 is to investigate the singular locus of a suitable moduli space in Ku(Y ).

Lemma 7.5. Let σ be a Serre-invariant stability condition on Ku(Y ). Then the singular locus of the moduli 
space Mσ(Ku(Y ), 2v − w) is at least two dimensional, consists of objects of form i∗Op such that p ∈ R, 
and O(j∗F ) where j : S ↪→ Y is a hyperplane section and F is a reflexive sheaf on S with τ(j∗F ) ∼= j∗F .

Proof. Since σ is O-invariant, the functor O makes an isomorphism Mσ(Ku(Y ), −w) ∼= Mσ(Ku(Y ), 2v −
w)). Thus for any F ∈ Mσ(Ku(Y ), 2v − w), there exists E ∈ Mσ(Ku(Y ), −w) so that F = O(E). Since 
RHom(F, F ) = RHom(E, E), we only need to consider the smoothness of [E] in Mσ(Ku(Y ), −w). By 
Proposition 6.1 and its proof, there are two possibilities:
Case (i). E = Ep for a point p ∈ Y as defined in (25). Since τ(Ep) = Eτ(p), we know that [E] is a singular 
point if and only if Ext2(Ep, Ep) = Hom(Ep, Eτ(p)) �= 0, which is equivalent to p = τ(p), i.e. p ∈ R.
Case (ii). E = j∗F is a reflexive Gieseker-stable sheaf supported on a hyperplane section j : S ↪→ Y . Then 
by σ-stability, Ext2(E, E) = Hom(E, τE) �= 0 if and only if τ(j∗F ) ∼= j∗F . �

The next Proposition analyzes further the second case in Lemma 7.5.

Proposition 7.6. Let σ be a Serre-invariant stability condition and j∗F ∈ Ku(Y ) be a σ-stable object of 
class w, where j : S ↪→ Y is a hyperplane section and F is a reflexive sheaf on S. Let E ∈ Ku(Y ) be a 
Gieseker-stable sheaf of class 2v. Assume that τ(j∗F ) ∼= j∗F , then we have

RHom(O(j∗F ), E) = C2[−2].

Proof. By Lemma 3.2, E is 2-Gieseker-stable. Thus j∗E is a sheaf by the torsion-freeness of E. Since 
F ∈ Ku(Y ), we see RHom(O(j∗F ), E) = RHom(j∗F (1), E). It is clear that Hom(j∗F (1), E) = 0.

We claim Ext3(j∗F (1), E) = Hom(E, j∗F (−1)) = 0. If not, there is a nonzero map π : E → j∗F (−1)
with ch≤1(ker(π)) = (2, −H) and H.ch2(ker(π)) ≥ 1. Thus by [27, Proposition 3.2], ker(π) cannot be 
μH -semistable. But since it is torsion-free, it has a two-term HN filtration E1 ↪→ ker(π) � E2. Since E1
is a subsheaf of E as well, we have ch≤2(E1) = (1, 0, a2H

2) where a ≤ −2. Thus ch(E2) = (1, −H) and 
ch2(E2).H = ch2(ker(π)).H − a ≥ 3, which is not possible.
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Therefore we get − ext1(O(j∗F ), E) + ext2(O(j∗F ), E) = χ(O(j∗F ), E) = 2, so we only need to show 
Ext1(O(j∗F ), E) = 0. Note that

Ext1(O(j∗F ), E) = Ext1(j∗F (1), E) = HomS(F, j∗E) = Hom(j∗F, j∗j∗E).

Assume there is a non-zero map s ∈ HomS(F, j∗E). Since F is torsion-free of rank one on S, s is injective. 
Let G := coker(s).
Claim: G is a torsion-free sheaf on S. As G has rank one on S, this implies j∗G is Gieseker-stable. To this 
end, we consider a commutative diagram of exact triangles

0 j∗F j∗F

E j∗j
∗E E(−1)[1]

j∗(s)

By taking cones, we get a commutative diagram with rows and columns exact

0 j∗F j∗F

E j∗j
∗E E(−1)[1]

E j∗G K[1]

j∗(s)

a

Here K is a sheaf since it is an extension of j∗F and E(−1) from the construction. Thus a is surjective and 
K = ker(a). Note that ch(K) = 2v − w. We consider two cases:

— If K is μH -stable, by Lemma 4.2 K is locally free. Since E is torsion-free, we get torsion-freeness of G
on S.

— If K is not μH -semistable, then there is a destabilizing sequence K1 → K → K2 where both K1 and K2
are rank one μH-stable sheaf. Note that since K is a subsheaf of E, it is torsion-free. The composition 
of injections K1 → K → E and 2-Gieseker stability of E implies that ch≤2(K1) = (1, 0, −a+2

2 H2) where 
a ≥ 0. Since K2 is torsion-free with class ch≤2(K2) = (1, −H, 1+a

2 H2), we get a = 0. Thus K2 ∼= Ip2(−H)
for some points p2 on Y . We denote W := coker(K1 ↪→ E). Then we have a commutative diagram

0 0

0 K1 K1 0

0 K E j∗G 0

0 K2 W j∗G 0

0 0 0

with rows and columns exact. Since RHom(OY , j∗F ) = RHom(OY , j∗j∗E) = 0, we get the vanishing 
RHom(OY , j∗G) = 0. In particular, G has no zero-dimensional torsion. We know ch≤2(W ) = (1, 0, 0), 
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from 2-Gieseker-stability of E, we see that the torsion part of W is zero-dimensional, which is not 
possible as G has no zero-dimensional subsheaf. Thus W ∼= Ip for some points p in Y , so the third row 
in the above diagram gives the short exact sequence Ip2(−H) ↪→ Ip � j∗G which implies j∗G is pure.

Hence G is torsion-free as claimed. Thus j∗E is also torsion-free as F and G are.
We divide the rest of the proof into two cases.
Case 1. First assume E is not locally free. By Proposition A.4, we have an exact sequence

0 → E → O⊕2
Y → Q → 0,

where Q is supported on a curve. Hence we get a triangle j∗E → O⊕2
S → j∗Q on S. Since Q is supported 

on a curve, Hi
Coh(S)(j∗Q) is at most one-dimensional for each i by [15, Lemma 3.29]. Using the fact that 

j∗E is torsion-free, we see j∗Q ∈ Coh(S) and hence j∗E ⊂ O⊕2
S . Thus F ⊂ O⊕2

S , which implies that 
HomS(F, OS) = Hom(j∗F, j∗ OS) �= 0. Hence Hom(j∗F, OY (−1)[1]) �= 0, which contradicts j∗F ∈ Ku(Y ).

Case 2. Now assume E is locally free, and so j∗E is locally free. Then taking HomS(−, F ) from the short 
exact sequence F → j∗E → G gives Ext1S(F, F ) = Ext2S(G, F ). By Lemma 7.8, we get Ext2S(G, F ) �= 0, which 
implies Ext3(j∗G, j∗F ) �= 0 from Lemma 7.7. However, by Serre duality we get Hom(j∗F, j∗G(−2)) �= 0, 
which contradicts the Gieseker-stability of j∗F and j∗G. �

Lemma 7.7. Let j : S ↪→ Y be a hyperplane section and E, F be two coherent sheaves on S with E torsion-
free. Let n ≥ 2 be the maximal integer with ExtnS(E, F ) �= 0. Then Extn+1(j∗E, j∗F ) �= 0.

Proof. We first show that any hyperplane section S ∈ | OY (1)| is normal and Gorenstein. Since Y is 
Gorenstein, S is too. Then by Serre’s criterion, to prove the normality of S, we only need to prove S has 
only finitely many singular closed points. Note that S = π−1(P ) is a double cover ramified over R ∩ P

for a projective plane P ⊂ P 3. By the property of double cover, we only need to show R ∩ P has isolated 
singularities. This follows from applying [26, Corollary 3.4.19] to R.

Since S is normal, the non-locally free locus of E has codimension two. Thus ExtiS(E, F ) is supported on 
points for any i > 0. Now we compute ExtiY (j∗E, j∗F ) := Hi(RHomY (j∗E, j∗F )). By adjunction, we have

RHomY (j∗E, j∗F ) = j∗RHomS(j∗j∗E,F ).

Since H0(j∗j∗E) ∼= E and H−1(j∗j∗E) ∼= E(−1), using [15, (3.8)], we have a spectral sequence convergent 
to Extp+q

S (j∗j∗E, F ) with Ep,0
2 = ExtpS(E, F ), Ep,1

2 = ExtpS(E, F )(1) and Ep,q
2 = 0 for p �= 0, 1. Therefore, we 

see that ExtiS(j∗j∗E, F ) is supported on points for i ≥ 2. Moreover, the term En,1
2 survives, hence En,1

2 =
En,1

∞ �= 0 implies that Extn+1
S (j∗j∗E, F ) �= 0. Thus ExtiY (j∗E, j∗F ) is supported on S, and furthermore 

supported on points for i ≥ 2 with Extn+1
Y (j∗E, j∗F ) �= 0.

Next, using [15, (3.16)], we have a spectral sequence

Ep,q
2 = Hp(ExtqY (j∗E, j∗F )) ⇒ Extp+q(j∗E, j∗F ).

By the previous argument, we know that E0,n+1
2 = length(Extn+1

Y (j∗E, j∗F )) �= 0. Moreover, from the 
dimension of support, we see Ep,q

2 = 0 for p ∈ {1, 2}, q ≥ 2 and any p ≥ 3, q ∈ Z. Since n ≥ 2, this implies 
E0,n+1

2 = E0,n+1
∞ �= 0, which gives Extn+1(j∗E, j∗F ) �= 0. �

Lemma 7.8. Let σ be a Serre-invariant stability condition on Ku(Y ) and j∗F ∈ Ku(Y ) be a σ-stable object 
where j : S ↪→ Y is a hyperplane section and F is a reflexive sheaf on S. If τ(j∗F ) ∼= j∗F , or equivalently 
Ext2(j∗F, j∗F ) �= 0, then Ext1S(F, F ) is non-zero and supported on a single point with length one.
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Proof. Note that by σ-stability and SKu(Y ) = τ [2], we know that Ext2(j∗F, j∗F ) = Hom(j∗F, τ(j∗F )) �= 0
if and only if Ext2(j∗F, j∗F ) = Hom(j∗F, τ(j∗F )) = C.

Since F is reflexive and S is normal, we have HomS(F, F ) = OS . Moreover, by Lemma 7.7 and the 
vanishing Exti(j∗F, j∗F ) = 0 when i ≥ 3, we get ExtiS(F, F ) = 0 for i ≥ 2. Therefore, if we compute 
Ext2Y (j∗F, j∗F ) as in Lemma 7.7, we get HomY (j∗F, j∗F ) = j∗ OS , Ext1Y (j∗F, j∗F ) is an extension of 
j∗ OS(1) with j∗Ext1S(F, F ), and Ext2Y (j∗F, j∗F ) = j∗Ext1S(F, F )(1). Thus, if we compute Exti(j∗F, j∗F ) as 
in Lemma 7.7, we see Ext2(j∗F, j∗F ) = H0(Ext2Y (j∗F, j∗F )). This implies that Ext1S(F, F ) is non-zero and 
supported on a single point with length one. �

Proof of Theorem 7.1 for degree d = 2. Note that O4 ∼= [2] when d = 2, so by Lemma 7.4 we can assume 
that there is a pair of integers m1, δ with 0 ≤ m1 ≤ 3 and δ = 0, 1 such that O−m1 ◦ Φ[δ] maps classes v
and w on Y to v′ and w′ on Y ′, respectively. Moreover, we know such m1 and δ is unique by looking at 
the action of O and [1] on N (Ku(Y )) and using the restricted values of m1 and δ. We may replace Φ by 
O−m1 ◦ Φ[δ].

We know Φ(i!QY ) ∈ MΦ(σ)(Ku(Y ′), 2v′), so by Proposition 4.1, up to a shift, it is either i′!QY ′ or a 
Gieseker-stable sheaf E′. Assume for a contradiction that the latter happens. We know Φ maps the singular 
locus of Mσ(Ku(Y ), 2v − w) to the singular locus of MΦ(σ)(Ku(Y ′), 2v′ − w′).

— Assume that Φ maps R ⊂ Mσ(Ku(Y ), 2v − w) to R′ ⊂ MΦ(σ)(Ku(Y ′), 2v′ − w′). Thus by Proposi-
tion 6.1, we get RHom

(
Φ(i∗ Op),Φ(i!QY )

)
and so RHom

(
i′∗ Op′ , E′) = RHom (Op′ , E′) are a two-term 

complex for all p′ ∈ R. But this makes a contradiction since E′ is torsion-free so the non-locally free 
locus of E′ has at most dimension one.

— Assume that Φ does not map R ⊂ Mσ(Ku(Y ), 2v−w) to R′ ⊂ MΦ(σ)(Ku(Y ′), 2v′−w′). By Lemma 7.5, 
there is a point p ∈ R such that Φ(i∗ Op) = O(j∗F ) up to shift, where j : S ↪→ Y ′ is a hyperplane section 
and F is a reflexive sheaf on S with τ ′(j∗F ) ∼= j∗F . Moreover, RHom(i∗ Op, i!QY ) = RHom(O(j∗F ), E′)
is a two-term complex. But this contradicts Proposition 7.6.

Hence in both cases, we get Φ(i!QY ) = i′ !QY ′ [m2 + δ] for a unique m2 ∈ Z and the claim follows. �

Remark 7.9. [1, Lemma 4.4] claims Ext2(j∗F, j∗F ) = 0 for any hyperplane section j : S ↪→ Y and a rank 
one reflexive sheaf F on S such that j∗F ∈ Ku(Y ). However, the proof is valid only for smooth S via the 
vanishing of Ext1S(F, F ). That is why in this section, we investigated further the singular locus in order to 
prove Theorem 7.1.

7.2. Degree three case

Now assume Y is a cubic threefold.

Proof of Theorem 7.1 for degree d = 3. In this case O6 ∼= [4], so by Lemma 7.4 there is a unique pair 
of integer m1, δ with 0 ≤ m1 ≤ 5 and δ = 0, 1 such that O−m1 ◦ Φ[δ] maps classes v and w on Y
to v′ and w′ on Y ′, respectively. We replace Φ by O−m1 ◦ Φ[δ]. Then by Proposition 5.5, the object 
Φ(i!QY ) ∈ MΦ(σ)(Ku(Y ′), 3v′), up to a shift, is either i′!QY ′ or a Gieseker-semistable sheaf E′. Assume for 
a contradiction that the latter happens.

By [2, Lemma 7.5, Theorem 8.7], BN Y ′ is the union of all rational curves in MΦ(σ)(Ku(Y ′), 3v′ − w′). 
Thus φ(BN Y ) = BN Y ′ . In other words, for any p ∈ Y we have Φ(i∗ Op) ∼= i′ ∗ Op′ for a point p′ ∈ Y ′ up 
to shift and vice versa. In particular, RHom(i′ ∗ Op′ , E′) is a two-term complex for all p′ ∈ Y ′. But this 
contradicts the torsion-freeness of E′. Hence we get Φ(i!QY ) = i′ !QY ′ [m2 + δ] for a unique m2 ∈ Z as 
claimed. �
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7.3. Degree four case

Let Y be a del Pezzo threefold of degree 4, then Ku(Y ) is equivalent to the bounded derived category 
Db(C) of a smooth projective curve C of genus 2. As in [24, Section 5], we fix the Fourier–Mukai equivalence 
ΨS : Db(C) → Ku(Y ) for the universal spinor bundle S on C × Y , where we see Y as a moduli space of 
stable rank 2 bundles on C with fixed determinant ξ of degree deg(ξ) = 1.

For any line bundle L on C, we denote the induced auto-equivalence of Ku(Y ) by TL := ΨS◦(− ⊗L) ◦Ψ−1
S . 

We write Aut0(Ku(Y )) for the subgroup of Aut(Ku(Y )) consisting of TL such that L ∈ Pic0(C). We will 
apply the following two facts about the action of O:

(a) By [24, Lemma 5.2], we know that via the equivalence ΨS , the action of O on N (Ku(Y )) is the same 
as twisting by a degree −1 line bundle on C, up to sign.

(b) Since any stability condition σ on Ku(Y ) is O-invariant, (semi)stability of a vector bundle on C will be 
preserved after the action of Ψ−1

S ◦ O ◦ ΨS .

Proof of Theorem 7.1 for degree d = 4. By Lemma 7.4, there exist a pair of integers m1, m2 such that 
O−m1 ◦Φ[−m2] maps classes v and w to v′ and w′. By the above point (a), such m1 is unique. Furthermore, 
we can take m2 uniquely by imposing the condition that Ψ−1

S ◦ (O−m1 ◦ Φ[−m2]) ◦ ΨS : Db(C) → Db(C ′)
maps bundles to bundles. We replace Φ by O−m1 ◦ Φ[−m2].

By [24, Lemma 5.9], Ψ−1
S (i! OY ) is a second Raynaud bundle9 R on C up to a shift. We know this 

bundle is unique on C up to tensoring by a line bundle of degree zero. Thus by the above point (b), 
Ψ−1

S (O(i! OY )) = Ψ−1
S (i!QY ) is also unique up to tensoring by a line bundle of degree zero. Indeed, let R

and R′ be two Raynaud bundles, then we can assume R′ = R⊗L0 for a degree 0 line bundle L0. Note that 
O = f∗ ◦ (− ⊗L−1) for a degree −1 line bundle L−1 up to shift, so that O(R′) = O(R⊗L0) = f∗(R) ⊗L′

−1
a degree −1 line bundle L′

−1. On the other hand, O(R) = f∗(R) ⊗ L′′
−1 for a degree −1 line bundle L′′

−1. 
Hence O(R) and O(R′) differ by a degree 0 line bundle. This proves there is a unique line bundle L0 on C ′

such that

(Ψ′−1
S′ ◦ Φ(i!QY )) ⊗ L−1

0 = Ψ′−1
S′ (i′!QY ′)

and so the claim follows. �

Proof of Theorem 7.1, in particular, implies the following.

Corollary 7.10.

— If d = 2, i!QY is the unique object in the moduli space Mσ(Ku(Y ), 2v) satisfying the following condition: 
there is a 2-dimensional sub-locus M′ of the singular locus of the moduli space Mσ(Ku(Y ), 2v − w)
such that for any object E ∈ M′, RHom(E , i!QY ) is a two-term complex.

— If d = 3, i!QY is the unique object in the moduli space Mσ(Ku(Y ), 3v) such that for any object 
E ∈ Mσ(Ku(Y ), 3v − w) whose corresponding point lies on a rational curve in Mσ(Ku(Y ), 3v − w), 
RHom(E , i!QY ) is a two-term complex.

— If d = 4, i!QY is a unique object in the moduli space Mσ(Ku(Y ), 4v) up to the action of an auto-
equivalence TL ∈ Aut0(Ku(Y )) such that RHom(E , i!QY ) is a two-term complex for any object E ∈
Mσ(Ku(Y ), −3v + w).

9 It is a semistable vector bundle of rank 4 and degree 4 on a genus 2 curve so that for any line bundle L of degree zero on C, 
we have Hom(L, R) �= 0.
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Proof. The first two cases for degree d = 2, 3 are a direct result of proof of Theorem 7.1. For d = 4, note 
that χ(E , i!QY ) = 0. Combining [24, Lemma 5.9] and [38, Theorem 1.1] implies that i! OY is a unique 
object in Mσ(Ku(Y ), 4(v − w)) up to the action of an auto-equivalence TL0 ∈ Aut0(Ku(Y )) such that 
RHom(E , i!QY ) is a two-term complex for any object E ∈ Mσ(Ku(Y ), v). Thus taking the rotation functor 
O implies the claim. �

7.4. Categorical Torelli theorem

As a result of Theorem 7.1, we show a categorical Torelli theorem for any del Pezzo threefold of degree 
2 ≤ d ≤ 4.

Corollary 7.11. Let Y and Y ′ be del Pezzo threefolds of degree 2 ≤ d ≤ 4 such that Φ : Ku(Y ) � Ku(Y ′) is 
an exact equivalence of Kuznetsov components, then Y ∼= Y ′.

Proof. By Theorem 7.1, we can assume that Φ(i!QY ) ∼= i′ !QY ′ . There is an isometry of numerical 
Grothendieck group φ : N (Ku(Y )) ∼= N (Ku(Y ′)) induced by Φ : Ku(Y ) � Ku(Y ′). As Φ(i!QY ) ∼= i′ !QY ′ , we 
get φ(v) = v′ and φ(w) = w′ by Lemma 7.4. Then the result follows from the uniqueness of Serre-invariant 
stability conditions and Theorem 6.2 via the same argument in [19, Corollary 6.11]. �

8. Auto-equivalences of Kuznetsov components of del Pezzo threefolds

In this section, we are going to prove Theorem 8.2 and Corollary 8.4, and describe the auto-equivalences 
of Kuznetsov components of del Pezzo threefolds. We begin with a lemma.

Lemma 8.1. Let f, g : Y → Y ′ be two isomorphisms between del Pezzo threefolds of Picard one. If f∗|Ku(Y ) =
g∗|Ku(Y ) : Ku(Y ) → Ku(Y ′), then f = g. Thus the homomorphism

Aut(Y ) → Aut(Ku(Y )), f �→ f∗|Ku(Y )

is injective.

Proof. We know f∗ and g∗ maps OY and OY (1) to OY ′ and OY ′(1) respectively. For any point p ∈ Y , we 
know f∗(Op) = Of(p) and the same for g. Thus we have

f∗(i∗ Op) = i′ ∗ Of(p) and g∗(i∗ Op) = i′ ∗ Og(p) .

Since f∗|Ku(Y ) = g∗|Ku(Y ), we get i′ ∗ Of(p) = i′ ∗ Og(p), i.e. i′ ∗ Of(p) and i′ ∗ Og(p) correspond to the same 
point in the moduli space Mσ(Ku(Y ), dv − w) by Proposition 6.1. Thus the embedding Ψ in (24) implies 
that f(p) = g(p) for any point p ∈ Y . Since both Y and Y ′ are smooth, we get f = g. �

Theorem 8.2. Let Y and Y ′ be two del Pezzo threefolds of the same degree d where d = 2, 3 or 4, and let 
Φ: Ku(Y ) → Ku(Y ′) be an exact equivalence of Fourier–Mukai type such that Φ(i!QY ) = i′ !QY ′ . Then 
Φ = f∗|Ku(Y ) for a unique isomorphism f : Y → Y ′.

Proof. Since [i!QY ] = dv ∈ N (Ku(Y )), Lemma 7.4 (a) implies that Φ maps v and w to v′ and w′, 
respectively. Then Theorem 6.2 shows that for any p ∈ Y , there is a point p′ ∈ Y ′ such that

Φ(i∗ Op) ∼= i′ ∗ Op′ . (31)
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Conversely, for any p′ ∈ Y ′, there is p ∈ Y such that the above holds. From Remark 7.2, we also have 
Φ(i! OY ) = i′ ! OY ′ . Thus using [29, Proposition 2.5 & Remark 2.2], Φ can be extended to an equivalence 
OY (1)⊥ ∼= OY ′(1)⊥, denoted again by Φ, so that Φ(OY ) ∼= OY ′ . Since i∗ = LOY

LOY (1), (31) implies that 
Φ(LOY (1)(Op)) ∼= LOY ′ (1)(Op′).

Let j : OY (1)⊥ ↪→ Db(Y ) and j′ : OY ′(1)⊥ ↪→ Db(Y ′) be the natural inclusions. We know

j! OY (1) = ROY (−1)(OY (1)),

so it lies in the triangle

OY (−1)[2] → j! OY (1) → OY (1). (32)

The next step is to compute i∗(j! OY (1)) = LOY
(j! OY (1)). Using the triangle above, it is easy to see 

RHom(OY , j! OY (1)) = Cd+2, so we have an triangle

O⊕d+2
Y → j! OY (1) → LOY

(j! OY (1)). (33)

Thus by taking cohomology we obtain

OY (−1)[2] → LOY
(j! OY (1)) → QY [1]

and so LOY
(j! OY (1)) = i!QY [1]. Therefore, we know that Φ(LOY

(j! OY (1))) = LOY ′ (j′
! OY ′(1)). Applying 

Φ to (33) gives a triangle

O⊕d+2
Y ′ → Φ(j! OY (1)) → i′

!QY ′ [1]. (34)

This implies that H−2(Φ(j! OY (1))) = OY ′(−1) and we have the long exact sequence

0 → H−1(Φ(j! OY (1))) → QY ′ → O⊕d+2
Y ′ → H0(Φ(j! OY (1))) → 0. (35)

Since j! OY (1) ∈ OY (1)⊥, by the adjunction of mutations, we have RHom(LOY (1)(Op), j! OY (1)) =
RHom(Op, j! OY (1)) for any p ∈ Y . Thus we have

RHom(Op, j
! OY (1)) = RHom(LOY (1)(Op), j! OY (1)) = RHom(Φ(LOY (1)(Op)),Φ(j! OY (1)))

= RHom(LOY ′ (1)(Op′),Φ(j! OY (1))) = RHom(Op′ ,Φ(j! OY (1))).

Using (32), we know that RHom(Op, j! OY (1)) = C[−1] ⊕C[−3]. Hence RHom(Op′ , Φ(j! OY (1))) = C[−1] ⊕
C[−3] for any p′ ∈ Y ′. By Serre-duality, we have

RHom(Φ(j! OY (1)),Op′) = C ⊕C[−2]. (36)

Then from [4, Proposition 5.4], Φ(j! OY (1)) is quasi-isomorphic to a complex

A−2 → A−1
α−→ A0, (37)

where Ak is a bundle of rank rk sitting in degree k in the complex. Note that (37) is a locally-free resolution 
of Φ(j! OY (1)). Therefore, we have H0(Φ(j! OY (1))) ∼= coker(α) and by applying Hom(−, Op′) to (37), we 
have a complex

Hom(A0,Op′) = Cr0 α−→ Hom(A−1,Op′) → Hom(A−2,Op′).
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Since Hom(Φ(j! OY (1)), Op′) = C, we get ker(α) = C. But note that α can be factored as Hom(A0, Op′) →
Hom(im(α), Op′) ↪→ Hom(A−1, Op′) which implies

hom((im(α),Op′)) ≥ r0 − 1.

Since p′ ∈ Y ′ is an arbitrary closed point, we have rk(im(α)) ≥ r0−1. Thus rk(H0(Φ(j! OY (1)))) ≤ 1. Since 
H0(Φ(j! OY (1))) sits in an exact sequence (35) and rk(QY ′) = d + 1, we have rk(H0(Φ(j! OY (1)))) = 1, 
which implies

rk(H−1(Φ(j! OY (1)))) = 0.

Since QY ′ is torsion-free, we have H−1(Φ(j! OY (1))) = 0 and H0(Φ(j! OY (1))) = OY ′(1) by definition (9). 
Thus Φ(j! OY (1)) lies in the exact triangle

OY ′(−1)[2] → Φ(j! OY (1)) → OY ′(1). (38)

Note that Hom(Φ(j! OY (1)), Φ(j! OY (1))) = Hom(j! OY (1), j! OY (1)) = Hom(j! OY (1), OY (1)) = C by 
(32), so the exact triangle (38) is non-splitting. Since Hom(OY ′(1), OY ′(−1)[3]) = 1, we get

Φ(j! OY (1)) ∼= j! OY ′(1).

Then applying again [29, Proposition 2.5] shows that the equivalence Φ: OY (1)⊥ → OY ′(1)⊥ can be 

extended to an equivalence Φ: Db(Y ) 
∼=−→ Db(Y ′) such that Φ(OY (1)) ∼= OY ′(1). Then [15, Corollary 5.23]

implies that Φ is the composition of f∗ for an isomorphism f : Y → Y ′ with the twist by a line bundle on 
Y . Since we know Φ(OY ) = OY ′ , we get Φ = f∗. Finally, such isomorphism f is unique by Lemma 8.1. �

Remark 8.3. Combining Theorem 7.1 with Theorem 8.2 provides an alternative proof of Categorical Torelli 
theorem for del Pezzo threefold of degree 2 ≤ d ≤ 4.

As an application, we obtain a complete description of the group AutFM(Ku(Y )) of exact auto-
equivalences of Ku(Y ) of Fourier–Mukai type.

Corollary 8.4. Let Y be a del Pezzo threefold of Picard rank one and degree d, and Φ ∈ AutFM(Ku(Y )) be 
an auto-equivalence of Ku(Y ) of Fourier–Mukai type.

(i) If 2 ≤ d ≤ 3, there exist a unique f ∈ Aut(Y ) and unique pair of integers m1, m2 ∈ Z with 0 ≤ m1 ≤ 3
when d = 2 and 0 ≤ m1 ≤ 5 when d = 3, so that

Φ = Om1 ◦ f∗|Ku(Y ) ◦ [m2].

(ii) If d = 4, there exists a unique f ∈ Aut(Y ) and unique pair of integers m1, m2 and a unique auto-
equivalence TL0 ∈ Aut0(Ku(Y )) (see Section 7.3 for definition) so that

Φ = Om1 ◦ TL0 ◦ f∗|Ku(Y ) ◦ [m2].

Proof. The result follows from Theorem 7.1 and Theorem 8.2. �

Remark 8.5. Assume Y ′ = Y , then Remark 7.3 and Theorem 8.2 show that the homomorphism

Aut(Y ) → AutFM(Ku(Y )), f �→ f∗|Ku(Y )
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is injective, and its image together with [2] generates the sub-group of auto-equivalences that act trivially 
on N (Ku(Y )). This strengthens [21, Lemma B.2.3].

Remark 8.6. For a del Pezzo threefold Y of degree 5, its Kuznetsov component Ku(Y ) is equivalent to the 
derived category of representations of 3-Kronecker quiver. It is known the group of auto-equivalences of 
Ku(Y ) is Z × (Z � PGL3(C)) by [34, Theorem 4.3].

Remark 8.7. For index one prime Fano threefold of genus 6 and 8, one can apply similar techniques in 
this section to compute the group of auto-equivalences of their Kuznetsov components. Combining with 
the results for del Pezzo threefold of degree 2 and 3, we can identify the group of automorphisms of cubic 
threefold and correspondent genus 8 prime Fano threefolds and provide another disproof of Kuznetsov’s 
Fano threefold conjecture ([23, Conjecture 3.7]). For details, we refer interested readers to the arxiv version 
of our paper.

Appendix A. Moduli space of instanton sheaves on quartic double solids

In this section, we fix Y to be a quartic double solid and study the moduli space MY (2, 0, 2) of semistable 
sheaves of rank two, c1 = 0, c2 = 2, c3 = 0 and the Bridgeland moduli space Mσ(Ku(Y ), 2v) of semistable 
objects of class 2v in the Kuznetsov component Ku(Y ).

A.1. Classifications

As is shown in Proposition 4.1 that up to shift, the σ-stable objects of class 2v in the Kuznetsov component 
Ku(Y ) of a quartic double solid Y is either a two-term complex i!QY or a Gieseker semistable sheaf of rank 
two, c1 = 0, c2 = 2 and c3 = 0. Denote by E such a sheaf. It is clear that H1(Y, E(−1)) = 0 since 
E ∈ Ku(Y ). Then it is an instanton sheaf in the sense of [32, Definition 6.2]. To study the geometric 
structure and properties of the Bridgeland moduli space Mσ(Ku(Y ), 2v), first we classify sheaves in the 
moduli space M inst

Y (2, 0, 2) of instanton sheaves on Y .

Proposition A.1. Let E ∈ MY (2, 0, 2). Then E /∈ Ku(Y ) if and only if it is a locally free sheaf fitting into 
an exact sequence

0 → OY (−1) → QY → E → 0. (39)

If E ∈ Ku(Y ), then E is

(1) either a strictly Gieseker-semistable sheaf, which is an extension of two ideal sheaves of lines,
(2) or a non-locally free sheaf fitting into a short exact sequence

0 → E → O⊕2
Y → Q → 0,

where Q = θC(1) is the theta characteristic of a smooth conic C, or Q is a sheaf on a codimension two 
linear section C of Y given by

0 → OC → Q → R → 0,

where R is a zero-dimensional sheaf on C of length two,
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(3) or a μH-stable vector bundle that E(1) is globally generated and fits into the short exact sequence

0 → OY (−H) → E → ID(H) → 0,

where D is the zero locus of a generic section of H0(E(1)), which is a degree 4 smooth elliptic curve.

Proof. If E is strictly Gieseker-semistable, then the result follows from applying Lemma 3.1 to Jordan–
Hölder factors. If E is Gieseker-stable, the result follows from Proposition A.4, Lemma A.8 and Proposi-
tion A.9 below. �

In the following, we are going to prove the results that will be used in the proof of Proposition A.1.

Lemma A.2. Let E be a μH-semistable reflexive sheaf of rank two, c1(E) = 0 and H0(E)=0. Then E is 
μH-stable.

Proof. If not, its Jordan–Hölder filtration with respect to μH-stability has two terms E1 ↪→ E � E2 where 
E1 and E2 are μH-stable sheaves with ch≤1(Ei) = (1, 0). Then E∨∨

1 = OY since Pic(Y ) = ZH. Then taking 
the double dual, we get a non-zero map OY → E∨∨ = E, which contradicts H0(E) = 0. �

Lemma A.3. There is no μH-semistable reflexive sheaf E of classes

(1) ch(E) = (2, 0, −1
2H

2, α1H
3),

(2) ch(E) = (2, 0, −H2, α2H
3) where α2 �= 0, and

(3) ch(E) = (2, 0, 0, α3H
3) where α3 �= 0.

Moreover, if ch(E) = 2ch(OY ), then E ∼= O⊕2
Y .

Proof. Note that being rank two and reflexive implies c3(E) ≥ 0 by [14, Proposition 2.6], hence αi ≥ 0. 
Then the case (2) follows from Lemma A.2 and Lemma 3.1. And case (3) follows from the same argument 
as in [2, Proposition 4.20].

So we only need to prove (1). Assume for a contradiction that E is a μH -semistable reflexive sheaf of 
classes ch(E) = (2, 0, −1

2H
2, α1H

3) with α1 ≥ 0. We know that there is no wall for E crossing the vertical 
line b = −1

2 , so Hom(E, OY (−2)[1]) = H2(E) = 0. And by μH-semistability, we get H0(E) = H3(E) = 0, 
which implies

2α1 + 1 = χ(OY , E) = − hom(OY , E[1]) ≤ 0

which makes a contradiction. If ch(E) = 2ch(OY ), then

hom(OY , E) − hom(OY , E[1]) = 2.

Thus Jordan–Hölder factors of E with respect to the μH -stability are all OY , and the result follows. �

Proposition A.4. Let E ∈ Ku(Y ) be a non-reflexive Gieseker-stable sheaf of character 2v, then E fits into a 
short exact sequence

0 → E → O⊕2
Y → Q → 0,

where Q = θC(1) is the theta characteristic of a smooth conic C, or Q is a sheaf on a codimension two 
linear section C of Y given by
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0 → OC → Q → R → 0,

where R is a zero-dimensional sheaf on C of length two.

Proof. Taking the reflexive hull of E gives the exact sequence

E → E∨∨ → Q (40)

where E∨∨ is a reflexive μH -semistable sheaf and Q is a torsion sheaf supported in dimension at most one. 
Applying Lemma A.3 to the exact sequence (40) shows that E∨∨ = O⊕2

Y and Q is a torsion sheaf of class 
ch(Q) = (0, 0, H2, 0). Since E ∈ Ku(Y ) and RHom(OY (1), E∨∨) = 0, we know that H0(Q(−1)) = 0. Then 
the result follows from Lemma A.7. �

Recall that there is a natural double covering π : Y → P 3 (cf. Section 7.1).

Lemma A.5. Let Z ⊂ Y be a one-dimensional closed subscheme with H.Z = 1. If Z is pure, then Z is a 
line.

Proof. Since H.Z = 1, we see Z is irreducible since it is pure. Then H.Zred = 1, which implies that 
ker(OZ → OZred

) is zero-dimensional. But this is impossible since OZ is pure. Hence Z is integral, and 
π(Z) ⊂ P 3 is also an integral subscheme of degree one, which is a line. Since Z ⊂ π−1(π(Z)) is an irreducible 
component, π−1(π(Z)) is reducible. Hence π−1(π(Z)) is union of two lines on Y , which implies that Z is a 
line. �

Lemma A.6. Let C ⊂ Y be a pure one-dimensional closed subscheme with H.C = 2 and χ(OC) = 0. Then 
C is irreducible and is the intersection of two hyperplane sections of Y . Moreover, C = π−1(π(C)) and 
π(C) ⊂ P 3 is a line.

Proof. If C is reducible, then from H.C = 2, each component is pure-dimensional with degree one, which is 
a line by Lemma A.5. Then these two components are either disjoint which implies χ(OC) = 2, or intersect 
at a single point, which gives χ(OC) = 1. Hence C is irreducible.

If H.Cred = 2, then C is reduced since OC is pure. Then π(C) is also integral. If the degree of π(C)
is two, then C ∼= π(C) which contradicts [42, Corollary 1.38] since χ(OC) = 0. Thus π(C) is a line, and 
C ⊂ π−1(π(C)). Since π−1(π(C)) is also a degree two curve of genus one, we have C = π−1(π(C)).

If H.Cred = 1, then Cred = l is a line, and we have an exact sequence 0 → Ol(−2) → OC → Ol → 0. 
Thus h0(OC(1)) = 2. Therefore, we have h0(IC(1)) ≥ 2 and C is contained in two different hyperplane 
sections S, S′ of Y . This implies that C ⊂ S ∩ S′. Since S ∩ S′ is also a degree two curve of genus one, we 
have C = S ∩ S′ = π−1(l). �

Lemma A.7. Let Q be a coherent sheaf on Y of class ch(Q) = (0, 0, H2, 0) with H0(Q(−1)) = 0 on Y . Then 
Q is either

(1) an extension of structure sheaves of lines on Y ,
(2) Q = θC(1), where θC is the theta characteristic of a smooth conic C on Y , or
(3) Q is a sheaf on a codimension two linear section C of Y given by

0 → OC → Q → R → 0,

where R is a zero-dimensional sheaf on C of length two.
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Proof. Since χ(Q) = 2, we have H0(Q) �= 0. Let s : OY → Q be a non-zero map. Then im(s) = OZ , where 
Z ⊂ Y is a subscheme. Since H0(Q(−1)) = 0, we see H0(OZ(−1)) = 0 and hence Z is pure-dimensional. 
Note that if H.Zred = H.Z, then the kernel of OZ → OZred

is zero-dimensional, which implies Z = Zred by 
H0(OZ(−1)) = 0. Let R := coker(s).

— Assume that H.Z = 1. Then by Lemma A.5, Z is a line and hence H1(OZ(−1)) = 0. Thus ch(R) =
(0, 0, H

2

2 , 0) and H0(R(−1)) = 0. We claim that R is also the structure sheaf of a line. Indeed, by χ(R) =
1, we have a non-zero map s′ : OY → R. By the same argument above, we see H0(im(s′)(−1)) = 0 and 
hence im(s′) is the structure sheaf of line by Lemma A.5. By the reason of Chern characters, we see 
im(s′) = R and the result follows.

— Assume that H.Z = 2. First, we assume that R = 0, hence OZ = Q. If H.Zred = 1, then Zred is a line by 
Lemma A.5. Thus ker(OZ → OZred

) satisfies properties of R in the first case. The same argument shows 
that ker(OZ → OZred

) is also the structure sheaf of a line. If H.Zred = 2, then the kernel of OZ → OZred

is zero-dimensional, which implies Z = Zred by H0(OZ(−1)) = 0. Note that Z is reducible, otherwise we 
have h0(OZ) = 1, which contradicts χ(OZ) = χ(Q) = 2. Hence by Lemma A.5, each of the irreducible 
components of Z is a line. Since ch(OZ) = (0, 0, H2, 0), we see Z is an extension of structure sheaves of 
two lines.
Now we assume that R �= 0. The same argument as in [11, Lemma 3.3] shows that Q is a OZ-module.
— If Z is reducible, then each component of Z has degree one. Hence H.Zred = H.Z = 2. This implies 

Z = Zred as above since H0(OZ(−1)) = 0. By Lemma A.5, Z is a union of two lines. And from R �= 0, 
we see these two lines intersect with each other. In other words, Z is a reducible conic. Now since Z
is a conic, the same argument as in [11, Lemma 3.3] shows that Z is a smooth conic and Q = θZ(1).

— If Z is irreducible and H.Zred = 2, then we also have Z = Zred, which implies that h0(OZ) = 1 and 
χ(OZ) ≤ 1. From [31, Lemma 4.3], we see 0 ≤ χ(OZ) ≤ 1. When χ(OZ) = 1, Z is also a conic, hence 
the same argument as in [11, Lemma 3.3] shows that Z is a smooth conic and Q = θZ(1). When 
χ(OZ) = 0, Z is the intersection of two hyperplane sections by Lemma A.6 and hence length(R) = 2.

— If Z is irreducible and H.Zred = 1, then Zred is a line by Lemma A.5. Therefore, we have an exact 
sequence 0 → Ol(−n) → OZ → Ol → 0, where n ∈ Z>0. In particular, we have h0(OZ) = 1 which 
implies χ(OZ) ≤ 1. From [31, Lemma 4.3], we see 0 ≤ χ(OZ) ≤ 1. When χ(OZ) = 1, Z is a conic. By 
[11, Lemma 3.3], Z is smooth and contradicts H.Zred = 1. When χ(OZ) = 0, we have length(R) = 2
and the result follows. �

Now assume E is a Gieseker-semistable reflexive sheaf of class 2v. It follows from [14, Proposition 2.6]
that E is a locally free sheaf and it is a slope stable locally free sheaf by Lemma A.2.

Lemma A.8. Let E ∈ MY (2, 0, 2) be a bundle with E ∈ Ku(Y ), then E(1) is globally generated and it fits 
into the short exact sequence

0 → OY (−H) → E → ID(H) → 0,

where D is a degree 4 smooth elliptic curve as the zero locus of a general section of E(1).

Proof. Note that H3(E(−2)) = H0(E∨) = H0(E) = 0 since E∨ ∼= E. Then from E ∈ Ku(Y ), we see 
Hi(E(1 − i)) = 0 for i > 0, thus E(1) is globally generated by Castelnuovo–Mumford regularity. Then 
the zero locus of a generic section of E(1) is smooth. The remaining statement follows from the Serre 
correspondence. �

On the other hand, the next proposition characterizes a semistable sheaf of rank two, c1 = 0, c2 = 2, c3 =
0, which is not in the Kuznetsov component Ku(Y ).
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Proposition A.9. Let E ∈ MY (2, 0, 2), then E �∈ Ku(Y ) if and only if E is locally free and fits into an exact 
sequence of the form (39).

Proof. By Lemma 3.1, we have RHom(OY , E) = 0. Note that H0(E(−1)) = H3(E(−1)) = 0 by Serre 
duality and stability. Thus from χ(E(−1)) = 0, we see E �∈ Ku(Y ) if and only if H1(E(−1)) = H2(E(−1)) �=
0.

First we assume that E fits into an exact sequence as above. Since QY is a μH -stable vector bundle 
by Lemma 3.3, it is clear that there is a non-zero morphism E → OY (−1)[1], then Hom(OY , E(−1)[2]) =
Hom(E, OY (−1)[1]) �= 0 by Serre duality.

Now we assume that H1(E(−1)) �= 0. Applying Hom(−, E) to (9) and using RHom(OY , E) = 0, we 
have Hom(QY , E) = H1(E(−1)) �= 0. Let π �= 0 ∈ Hom(QY , E). We claim that π is surjective and 
ker(π) ∼= OY (−H). Indeed, if rk(im(π)) = 2, then ker(π) is a reflexive torsion-free sheaf of rank one 
since QY is locally free and E is torsion-free. From the smoothness of Y , we know that ker(π) is a line 
bundle. By the μH-semistability of QY and E, we know that c1(im(π)) = 0, i.e. c1(ker(π)) = −H and 
ker(π) = OY (−H). Therefore, we only need to show that rk(im(π)) �= 1.

To this end, we assume that rk(im(π)) = 1. Then by the μH-semistability, we have c1(im(π)) = 0. Thus 
ch≤2(im(π)) = (1, 0, −a

2H
2) for a ≥ 1. But we also know that Gieseker-stable implies 2-Gieseker-stable for 

E by Lemma 3.2. Thus the only possible case is a ≥ 2. Then ch≤2(ker(π)) = (2, −H, a−1
2 H2) with a −1 ≥ 1. 

But from the stability of QY , we know that ker(π) is also μH -stable. This contradicts [27, Proposition 3.2]. 
Then the claim is proved.

The only part we remain to show is the local freeness of E. Assume that E fits into (39). If E is 
not reflexive, then as in Proposition A.4, we get E∨∨ = O⊕2

Y . However, using (39) we can compute that 
Hom(E, OY ) = 0, which makes a contradiction. Thus E is reflexive, and by rk(E) = 2 and c3(E) = 0, we 
see E is locally free. �

A.2. Singularities of moduli spaces

In this section, we study singularities of stable moduli spaces Ms
Y (2, 0, 2) and Ms

σ(Ku(Y ), 2v).

Lemma A.10. We have

(1) RHom(OY (1), QY ) = C[−1],
(2) RHom(QY , QY ) = C, and
(3) RHom(OY (−1), QY ) = C6 ⊕C[−1].

Proof. (1) follows from applying Hom(OY (1), −) to (9). Note that RHom(OY , QY ) = 0, then (2) follows 
from (1) and applying Hom(−, QY ) to (9).

For (3), recall that π∗ OY = OP3 ⊕ OP3(−2). Since QY = π∗ΩP3(1), we have H0(QY (1)) = H0(ΩP3(2) ⊕
ΩP3). Thus h0(QY (1)) = 6 by the standard result on P 3. And by (9), we get Hi(QY (1)) = 0 for i > 1. 
Then the result follows from χ(QY (1)) = 5. �

Lemma A.11. We have RHom(i!QY , i!QY ) = C ⊕C6[−1] ⊕C[−2].

Proof. By the adjunction of i and i!, we have RHom(i!QY , QY ) = RHom(i!QY , i!QY ). Then the result 
follows from applying Hom(−, QY ) to (12) and using Lemma A.10. �

Lemma A.12. Let E ∈ MY (2, 0, 2) and E �∈ Ku(Y ), then RHom(E, E) = C ⊕C6[−1] ⊕C[−2].
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Proof. Since E is stable, we have Hom(E, E) = C. And by stability we get Ext3(E, E) = Hom(E, E(−2)) =
0. To prove the statement, we only need to show ext2(E, E) = 1.

We compute Ext2(E, E) via the standard spectral sequence (see e.g. [36, Lemma 2.27]) and (39). We 
have a spectral sequence with the first page

Ep,q
1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Extq(QY ,OY (−1)), p = −1
Extq(OY (−1),OY (−1))

⊕
Extq(QY ,QY ), p = 0

Extq(OY (−1),QY ), p = 1
0, p ≤ −2, p ≥ 2

and convergent to Extp+q(E, E). Then using Lemma A.10, we obtain ext2(E, E) = 1 and the result follows.

Remark A.13. Denote by Mni the locus of Gieseker-semistable sheaves E ∈ MY (2, 0, 2) but E �∈ Ku(Y ). By 
Lemma A.12 the locus Mni is everywhere singular. But according to Lemma A.10 and (39), the reduction 
Mni

red of such locus is isomorphic to PHom(OY (−1), QY ) ∼= P 5. In the following section A.3, we show it is 
contracted to a singular point in the Bridgeland moduli space Mσ(Ku(Y ), 2v) via projection functor i∗. �

A.3. Bridgeland moduli space

Finally, we study the relation between MY (2, 0, 2) and Mσ(Ku(Y ), 2v).

Lemma A.14. Let E ∈ MY (2, 0, 2) such that E �∈ Ku(Y ). Then i∗E ∼= i!QY .

Proof. Note that i∗ OY (−1)[1] ∼= i!QY . Then applying i∗ to (39), we only need to show i∗QY
∼= 0. By 

definition, we get an exact triangle

OY (1)[−1] s−→ QY → LOY (1)QY ,

where s is the unique non-zero map in Hom(OY (1)[−1], QY ) up to scalar. We claim that the induced map

LOY
(s) : LOY

OY (1)[−1] → LOY
QY

is an isomorphism, which implies i∗QY
∼= 0. Indeed, we have an exact triangle

OY (1)[−1] s−→ QY → O⊕4
Y

which comes from (9). Since LOY
OY

∼= 0, the claim follows. �

Proposition A.15. Let Y be a quartic double solid and σ be a Serre-invariant stability condition on Ku(Y ). 
Then the projection functor i∗ induces a morphism

p : MY (2, 0, 2) � Mσ(Ku(Y ), 2v)

such that contracts Mni to a singular point represented by i!QY , and is an isomorphism outside Mni.

Proof. Note that up to shift, all strictly σ-semistable objects are extensions of two ideal sheaves of lines, 
which are exactly all strictly Gieseker-semistable of class 2v by Theorem A.1. Thus i∗ affects nothing on the 
strictly Gieseker-semistable locus. From Lemma 4.4, we also know that i!QY is σ-stable. Then the result 
follows from Theorem A.1, Lemma A.14 and Lemma A.11. �
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Remark A.16. It looks plausible that for generic quartic double solids Y , the only singular point in 
Mσ(Ku(Y ), 2v) would be the point [i!QY ]. As a result, up to composing with O and [1], any exact equiv-
alence Φ : Ku(Y ) � Ku(Y ′) would send i!QY to i′ !QY ′ , then by Theorem 6.2, we can get an alternative 
proof of categorical Torelli theorem for generic quartic double solids.
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